These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 19059598)

  • 41. The differences in surfactant adsorption on carbon nanotubes and their bundles.
    Angelikopoulos P; Bock H
    Langmuir; 2010 Jan; 26(2):899-907. PubMed ID: 19839636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Packing effects on argon and methanol adsorption inside graphitic cylindrical and slit pores: a GCMC simulation study.
    Liu Z; Horikawa T; Do DD; Nicholson D
    J Colloid Interface Sci; 2012 Feb; 368(1):474-87. PubMed ID: 22082798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black.
    Horikawa T; Zeng Y; Do DD; Sotowa K; Alcántara Avila JR
    J Colloid Interface Sci; 2015 Feb; 439():1-6. PubMed ID: 25463168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of Lennard-Jones fluids confined in square nanoscale channels from density functional theory.
    Yang X; Ding J
    J Chem Phys; 2004 Oct; 121(15):7449-56. PubMed ID: 15473819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular modeling of freezing of simple fluids confined within carbon nanotubes.
    Hung FR; Coasne B; Santiso EE; Gubbins KE; Siperstein FR; Sliwinska-Bartkowiak M
    J Chem Phys; 2005 Apr; 122(14):144706. PubMed ID: 15847552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes.
    Cheng H; Cooper AC; Pez GP; Kostov MK; Piotrowski P; Stuart SJ
    J Phys Chem B; 2005 Mar; 109(9):3780-6. PubMed ID: 16851425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory.
    Martinez A; Castro M; McCabe C; Gil-Villegas A
    J Chem Phys; 2007 Feb; 126(7):074707. PubMed ID: 17328627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.
    Hantal G; Picaud S; Hoang PN; Voloshin VP; Medvedev NN; Jedlovszky P
    J Chem Phys; 2010 Oct; 133(14):144702. PubMed ID: 20950025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical study of the contribution of physisorption to the low-pressure adsorption of hydrogen on carbon nanotubes.
    Mélançon E; Bénard P
    Langmuir; 2004 Aug; 20(18):7852-9. PubMed ID: 15323540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulation study on the adsorption properties of linear alkanes on closed nanotube bundles.
    Cannon JJ; Vlugt TJ; Dubbeldam D; Maruyama S; Shiomi J
    J Phys Chem B; 2012 Aug; 116(32):9812-9. PubMed ID: 22764885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong correlations and Fickian water diffusion in narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Chem Phys; 2007 Mar; 126(12):124704. PubMed ID: 17411149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of molecular adsorption on the dielectric properties of a single wall nanotube: a model sensor.
    Langlet R; Arab M; Picaud F; Devel M; Girardet C
    J Chem Phys; 2004 Nov; 121(19):9655-65. PubMed ID: 15538888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study.
    Hantal G; Jedlovszky P; Hoang PN; Picaud S
    Phys Chem Chem Phys; 2008 Nov; 10(42):6369-80. PubMed ID: 18972025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enthalpy and entropy effects in hydrogen adsorption on carbon nanotubes.
    Efremenko I; Sheintuch M
    Langmuir; 2005 Jul; 21(14):6282-8. PubMed ID: 15982032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading.
    Do DD; Do HD
    Langmuir; 2004 Dec; 20(25):10889-99. PubMed ID: 15568838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethane/ethylene adsorption on carbon nanotubes: temperature and size effects on separation capacity.
    Albesa AG; Rafti M; Rawat DS; Vicente JL; Migone AD
    Langmuir; 2012 Jan; 28(3):1824-32. PubMed ID: 22168522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.