These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19059623)

  • 1. Removal of sulfate from high-strength wastewater by crystallisation.
    Tait S; Clarke WP; Keller J; Batstone DJ
    Water Res; 2009 Feb; 43(3):762-72. PubMed ID: 19059623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate removal from waste chemicals by precipitation.
    Benatti CT; Tavares CR; Lenzi E
    J Environ Manage; 2009 Jan; 90(1):504-11. PubMed ID: 18222593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor.
    Aldaco R; Garea A; Irabien A
    Water Res; 2007 Feb; 41(4):810-8. PubMed ID: 17234235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate recovery from greenhouse wastewater.
    Yi WG; Lo KV
    J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling.
    Sanciolo P; Zou L; Gray S; Leslie G; Stevens D
    Chemosphere; 2008 May; 72(2):243-9. PubMed ID: 18328536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin.
    Haghsheno R; Mohebbi A; Hashemipour H; Sarrafi A
    J Hazard Mater; 2009 Jul; 166(2-3):961-6. PubMed ID: 19135783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water.
    Dann AL; Cooper RS; Bowman JP
    Water Res; 2009 May; 43(8):2302-16. PubMed ID: 19297003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the reversible reaction of struvite crystallisation.
    Crutchik D; Garrido JM
    Chemosphere; 2016 Jul; 154():567-572. PubMed ID: 27085317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of lead ions from solution by phosphosilicate glass.
    Kim CY; Kim HJ; Nam JS
    J Hazard Mater; 2008 May; 153(1-2):173-8. PubMed ID: 17904733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio.
    Friedl GF; Mockaitis G; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Appl Biochem Biotechnol; 2009 Oct; 159(1):95-109. PubMed ID: 19277484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ureolytic phosphate precipitation from anaerobic effluents.
    Desmidt E; Verstraete W; Dick J; Meesschaert BD; Carballa M
    Water Sci Technol; 2009; 59(10):1983-8. PubMed ID: 19474493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor.
    González-Sánchez A; Revah S
    Water Sci Technol; 2009; 59(7):1415-21. PubMed ID: 19381008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater.
    Park JY; Byun HJ; Choi WH; Kang WH
    Chemosphere; 2008 Feb; 70(8):1429-37. PubMed ID: 17950778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel sulfate removal process by ettringite precipitation with aluminum recovery: Kinetics and a pilot-scale study.
    Tian X; Zhou Z; Xin Y; Jiang LM; Zhao X; An Y
    J Hazard Mater; 2019 Mar; 365():572-580. PubMed ID: 30469037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein purification by bulk crystallization: the recovery of ovalbumin.
    Judge RA; Johns MR; White ET
    Biotechnol Bioeng; 1995 Nov; 48(4):316-23. PubMed ID: 18623492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.