These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19059710)

  • 21. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliable estimation of performance of explosives without considering their heat contents.
    Keshavarz MH
    J Hazard Mater; 2007 Aug; 147(3):826-31. PubMed ID: 17335968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of shock sensitivity of explosives based on small-scale gap test.
    Keshavarz MH; Motamedoshariati H; Pouretedal HR; Tehrani MK; Semnani A
    J Hazard Mater; 2007 Jun; 145(1-2):109-12. PubMed ID: 17150305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detonation temperature of high explosives from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2006 Oct; 137(3):1303-8. PubMed ID: 16806689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple approach for predicting impact sensitivity of polynitroheteroarenes.
    Keshavarz MH; Zali A; Shokrolahi A
    J Hazard Mater; 2009 Jul; 166(2-3):1115-9. PubMed ID: 19144460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliable prediction of electric spark sensitivity of nitramines: a general correlation with detonation pressure.
    Keshavarz MH; Pouretedal HR; Semnani A
    J Hazard Mater; 2009 Aug; 167(1-3):461-6. PubMed ID: 19188021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes.
    Wang G; Gong X; Liu Y; Du H; Xu X; Xiao H
    J Hazard Mater; 2010 May; 177(1-3):703-10. PubMed ID: 20064687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [5.5.1.1(3, 11).1 (5, 9)] pentadecane.
    Zhang JY; Du HC; Wang F; Gong XD; Ying SJ
    J Mol Model; 2012 Jun; 18(6):2369-76. PubMed ID: 21989962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).
    Trzciński WA; Cudziło S; Chyłek Z; Szymańczyk L
    J Hazard Mater; 2008 Sep; 157(2-3):605-12. PubMed ID: 18282659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved prediction of heats of sublimation of energetic compounds using their molecular structure.
    Keshavarz MH
    J Hazard Mater; 2010 May; 177(1-3):648-59. PubMed ID: 20060639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on energetic compounds. Part XI: preparation and thermolysis of polynitro organic compounds.
    Singh G; Kapoor IP; Mannan SM; Tiwari SK
    J Hazard Mater; 1999 Sep; 68(3):155-78. PubMed ID: 10550708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array.
    Germain ME; Knapp MJ
    J Am Chem Soc; 2008 Apr; 130(16):5422-3. PubMed ID: 18376839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two important factors influencing shock sensitivity of nitro compounds: Bond dissociation energy of X-NO2 (X = C, N, O) and Mulliken charges of nitro group.
    Tan B; Long X; Peng R; Li H; Jin B; Chu S; Dong H
    J Hazard Mater; 2010 Nov; 183(1-3):908-12. PubMed ID: 20800351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of nitroaromatics' composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis.
    Kuz'min VE; Muratov EN; Artemenko AG; Gorb L; Qasim M; Leszczynski J
    Chemosphere; 2008 Jul; 72(9):1373-80. PubMed ID: 18558419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple method to assess detonation temperature without using any experimental data and computer code.
    Keshavarz MH; Nazari HR
    J Hazard Mater; 2006 May; 133(1-3):129-34. PubMed ID: 16297533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2006 Aug; 136(2):145-50. PubMed ID: 16426749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting condensed phase heat of formation of nitroaromatic compounds.
    Keshavarz MH
    J Hazard Mater; 2009 Sep; 169(1-3):890-900. PubMed ID: 19501463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new approach to predict the strength of high energy materials.
    Keshavarz MH; Ghorbanifaraz M; Rahimi H; Rahmani M
    J Hazard Mater; 2011 Feb; 186(1):175-81. PubMed ID: 21112143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.