These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19060099)
21. Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein. Gilmore AM Photosynth Res; 2001; 67(1-2):89-101. PubMed ID: 16228319 [TBL] [Abstract][Full Text] [Related]
22. Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. Matsubara S; Chen YC; Caliandro R; Govindjee ; Clegg RM J Photochem Photobiol B; 2011; 104(1-2):271-84. PubMed ID: 21356597 [TBL] [Abstract][Full Text] [Related]
23. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Leipner J; Stamp P; Fracheboud Y Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229 [TBL] [Abstract][Full Text] [Related]
24. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. Latowski D; Burda K; Strzałka K J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111 [TBL] [Abstract][Full Text] [Related]
25. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Hobe S; Niemeier H; Bender A; Paulsen H Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733 [TBL] [Abstract][Full Text] [Related]
26. Effect of photoinhibition and temperature on carotenoids in sorghum leaves. Sharma PK; Hall DO Indian J Biochem Biophys; 1996 Dec; 33(6):471-7. PubMed ID: 9219432 [TBL] [Abstract][Full Text] [Related]
27. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection. Peguero-Pina JJ; Gil-Pelegrín E; Morales F J Exp Bot; 2013 Apr; 64(6):1649-61. PubMed ID: 23390289 [TBL] [Abstract][Full Text] [Related]
28. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. Nowicka B; Strzalka W; Strzalka K J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749 [TBL] [Abstract][Full Text] [Related]
29. A simple indicator for non-destructive estimation of the violaxanthin cycle pigment content in leaves. Nichelmann L; Schulze M; Herppich WB; Bilger W Photosynth Res; 2016 May; 128(2):183-93. PubMed ID: 26803612 [TBL] [Abstract][Full Text] [Related]
30. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH. Gilmore AM; Mohanty N; Yamamoto HY FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578 [TBL] [Abstract][Full Text] [Related]
31. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species. Hughes NM; Burkey KO; Cavender-Bares J; Smith WK J Exp Bot; 2012 Mar; 63(5):1895-905. PubMed ID: 22162871 [TBL] [Abstract][Full Text] [Related]
32. Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. Stroch M; Kuldová K; Kalina J; Spunda V J Plant Physiol; 2008 Apr; 165(6):612-22. PubMed ID: 17761355 [TBL] [Abstract][Full Text] [Related]
33. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Lu Q; Lu C Plant Physiol Biochem; 2004 May; 42(5):395-402. PubMed ID: 15191742 [TBL] [Abstract][Full Text] [Related]
34. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Han Q; Katahata S; Kakubari Y; Mukai Y Tree Physiol; 2004 Jun; 24(6):609-16. PubMed ID: 15059761 [TBL] [Abstract][Full Text] [Related]
35. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Königer M; Harris GC; Virgo A; Winter K Oecologia; 1995 Nov; 104(3):280-290. PubMed ID: 28307583 [TBL] [Abstract][Full Text] [Related]
36. Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and Viscaceae. Matsubara S; Morosinotto T; Bassi R; Christian AL; Fischer-Schliebs E; Lüttge U; Orthen B; Franco AC; Scarano FR; Förster B; Pogson BJ; Osmond CB Planta; 2003 Oct; 217(6):868-79. PubMed ID: 12844265 [TBL] [Abstract][Full Text] [Related]
37. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity. Takayama K; King D; Robinson SA; Osmond B Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766 [TBL] [Abstract][Full Text] [Related]
38. Dynamic acclimation to sunlight in an alpine plant, Soldanella alpina L. Talhouët AC; Meyer S; Baudin X; Streb P Physiol Plant; 2020 Mar; 168(3):563-575. PubMed ID: 31090072 [TBL] [Abstract][Full Text] [Related]
39. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants. Dymova O; Golovko T Acta Biochim Pol; 2012; 59(1):143-4. PubMed ID: 22428127 [TBL] [Abstract][Full Text] [Related]
40. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. Cheng L J Exp Bot; 2003 Jan; 54(381):385-93. PubMed ID: 12493867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]