BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19060149)

  • 1. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes.
    Pope SD; Chen LL; Stewart V
    J Bacteriol; 2009 Feb; 191(3):1006-17. PubMed ID: 19060149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae.
    Guzmán K; Badia J; Giménez R; Aguilar J; Baldoma L
    J Bacteriol; 2011 May; 193(9):2197-207. PubMed ID: 21357483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal location of genes participating in the degradation of purines in Pseudomonas aeruginosa.
    Matsumoto H; Ohta S; Kobayashi R; Terawaki Y
    Mol Gen Genet; 1978 Nov; 167(2):165-76. PubMed ID: 104142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant.
    Brychkova G; Alikulov Z; Fluhr R; Sagi M
    Plant J; 2008 May; 54(3):496-509. PubMed ID: 18266920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source.
    Nygaard P; Bested SM; Andersen KAK; Saxild HH
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3061-3069. PubMed ID: 11101664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine catabolism by enterobacteria.
    Huynh TN; Stewart V
    Adv Microb Physiol; 2023; 82():205-266. PubMed ID: 36948655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Completing the purine utilisation pathway of Aspergillus nidulans.
    Gournas C; Oestreicher N; Amillis S; Diallinas G; Scazzocchio C
    Fungal Genet Biol; 2011 Aug; 48(8):840-8. PubMed ID: 21419234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
    Yu D; Breaker RR
    RNA; 2020 Aug; 26(8):960-968. PubMed ID: 32345632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator.
    Schultz AC; Nygaard P; Saxild HH
    J Bacteriol; 2001 Jun; 183(11):3293-302. PubMed ID: 11344136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hpx genetic system for hypoxanthine assimilation as a nitrogen source in Klebsiella pneumoniae: gene organization and transcriptional regulation.
    de la Riva L; Badia J; Aguilar J; Bender RA; Baldoma L
    J Bacteriol; 2008 Dec; 190(24):7892-903. PubMed ID: 18849434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and metabolic control of the purine catabolic enzymes of Neurospora crasse.
    Reinert WR; Marzluf GA
    Mol Gen Genet; 1975 Aug; 139(1):39-55. PubMed ID: 126363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of purines to xanthine by Methanococcus vannielii.
    DeMoll E; Tsai L
    Arch Biochem Biophys; 1986 Nov; 250(2):440-5. PubMed ID: 3777942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine.
    Mohamedali KA; Guicherit OM; Kellems RE; Rudolph FB
    J Biol Chem; 1993 Nov; 268(31):23728-33. PubMed ID: 8226898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of xanthine oxidase from Cellulosimicrobium funkei possessing hypoxanthine-metabolizing activity.
    Kozono I; Takeuchi M; Kozono S; Satomura A; Aoki W; Hibi M; Ogawa J
    J Appl Microbiol; 2021 Jun; 130(6):2132-2140. PubMed ID: 33090589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content.
    Jankowska DA; Trautwein-Schult A; Cordes A; Hoferichter P; Klein C; Bode R; Baronian K; Kunze G
    J Appl Microbiol; 2013 Sep; 115(3):796-807. PubMed ID: 23773263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine degradation in Pseudomonas aeruginosa and Pseudomonas testosteroni.
    Bongaerts GP; Sin IL; Peters AL; Vogels GD
    Biochim Biophys Acta; 1977 Aug; 499(1):111-8. PubMed ID: 407941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biochemistry of nitrogen mobilization: purine ring catabolism.
    Werner AK; Witte CP
    Trends Plant Sci; 2011 Jul; 16(7):381-7. PubMed ID: 21482173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of the HpxO enzyme from Klebsiella pneumoniae, a novel FAD-dependent urate oxidase.
    O'Leary SE; Hicks KA; Ealick SE; Begley TP
    Biochemistry; 2009 Apr; 48(14):3033-5. PubMed ID: 19260710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage.
    Xi H; Schneider BL; Reitzer L
    J Bacteriol; 2000 Oct; 182(19):5332-41. PubMed ID: 10986234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of 8-oxo-purines is mainly routed via the guanine to xanthine interconversion pathway in Mycobacterium smegmatis.
    Knejzlík Z; Herkommerová K; Pichová I
    Tuberculosis (Edinb); 2019 Dec; 119():101879. PubMed ID: 31731062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.