BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19060171)

  • 1. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.
    Verhoef S; Wierckx N; Westerhof RG; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2009 Feb; 75(4):931-6. PubMed ID: 19060171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose.
    Nijkamp K; Westerhof RG; Ballerstedt H; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):617-24. PubMed ID: 17111138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.
    Wierckx NJ; Ballerstedt H; de Bont JA; Wery J
    Appl Environ Microbiol; 2005 Dec; 71(12):8221-7. PubMed ID: 16332806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
    Verhoef S; Ruijssenaars HJ; de Bont JA; Wery J
    J Biotechnol; 2007 Oct; 132(1):49-56. PubMed ID: 17900735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
    Nijkamp K; van Luijk N; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):170-7. PubMed ID: 15824922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological production of monoethanolamine by engineered Pseudomonas putida S12.
    Foti M; Médici R; Ruijssenaars HJ
    J Biotechnol; 2013 Sep; 167(3):344-9. PubMed ID: 23876477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations.
    Neumann G; Kabelitz N; Zehnsdorf A; Miltner A; Lippold H; Meyer D; Schmid A; Heipieper HJ
    Appl Environ Microbiol; 2005 Nov; 71(11):6606-12. PubMed ID: 16269688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C(1) compounds as auxiliary substrate for engineered Pseudomonas putida S12.
    Koopman FW; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):705-13. PubMed ID: 19280184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase.
    Neumann G; Cornelissen S; van Breukelen F; Hunger S; Lippold H; Loffhagen N; Wick LY; Heipieper HJ
    Appl Environ Microbiol; 2006 Jun; 72(6):4232-8. PubMed ID: 16751536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene.
    Qi WW; Vannelli T; Breinig S; Ben-Bassat A; Gatenby AA; Haynie SL; Sariaslani FS
    Metab Eng; 2007 May; 9(3):268-76. PubMed ID: 17451990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement.
    Verhoef S; Ballerstedt H; Volkers RJ; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):679-90. PubMed ID: 20449741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering.
    Janardhan Garikipati SV; Peeples TL
    J Biotechnol; 2015 Sep; 210():91-9. PubMed ID: 26143210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-impregnated resins as an in situ product recovery tool for phenol recovery from Pseudomonas putida S12TPL fermentations.
    van den Berg C; Wierckx N; Vente J; Bussmann P; de Bont J; van der Wielen L
    Biotechnol Bioeng; 2008 Jun; 100(3):466-72. PubMed ID: 18438869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources.
    Sariaslani FS
    Annu Rev Microbiol; 2007; 61():51-69. PubMed ID: 17456010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fed-batch production of poly-3-hydroxydecanoate from decanoic acid.
    Gao J; Ramsay JA; Ramsay BA
    J Biotechnol; 2016 Jan; 218():102-7. PubMed ID: 26689481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics.
    Wierckx N; Ruijssenaars HJ; de Winde JH; Schmid A; Blank LM
    J Biotechnol; 2009 Aug; 143(2):124-9. PubMed ID: 19560494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical.
    Wery J; Mendes da Silva DI; de Bont JA
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):180-5. PubMed ID: 10968630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2024 Feb; 23(1):69. PubMed ID: 38419048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.