BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19060310)

  • 61. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selective inactivation of M-MuLV RT RNase H activity by site-directed PEGylation: an improved ability to synthesize long cDNA molecules.
    Radzvilavicius T; Lagunavicius A
    N Biotechnol; 2012 Feb; 29(3):285-92. PubMed ID: 21807127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase.
    Coté ML; Roth MJ
    Virus Res; 2008 Jun; 134(1-2):186-202. PubMed ID: 18294720
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural and inhibition studies of the RNase H function of xenotropic murine leukemia virus-related virus reverse transcriptase.
    Kirby KA; Marchand B; Ong YT; Ndongwe TP; Hachiya A; Michailidis E; Leslie MD; Sietsema DV; Fetterly TL; Dorst CA; Singh K; Wang Z; Parniak MA; Sarafianos SG
    Antimicrob Agents Chemother; 2012 Apr; 56(4):2048-61. PubMed ID: 22252812
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase.
    Sooknanan R; Howes M; Read L; Malek LT
    Biotechniques; 1994 Dec; 17(6):1077-80, 1083-5. PubMed ID: 7532977
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase.
    Döring J; Hurek T
    Nucleic Acids Res; 2017 Apr; 45(7):3967-3984. PubMed ID: 28160599
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase.
    Boyer PL; Stenbak CR; Clark PK; Linial ML; Hughes SH
    J Virol; 2004 Jun; 78(12):6112-21. PubMed ID: 15163704
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit.
    Sevilya Z; Loya S; Adir N; Hizi A
    Nucleic Acids Res; 2003 Mar; 31(5):1481-7. PubMed ID: 12595556
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching.
    Hwang CK; Svarovskaia ES; Pathak VK
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12209-14. PubMed ID: 11593039
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of reverse transcriptases by flavonoids.
    Spedding G; Ratty A; Middleton E
    Antiviral Res; 1989 Sep; 12(2):99-110. PubMed ID: 2480745
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Exogenous primer-independent cDNA synthesis with commercial reverse transcriptase preparations on plant virus RNA templates.
    Agranovsky AA
    Anal Biochem; 1992 May; 203(1):163-5. PubMed ID: 1381874
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanism of RNA primer removal by the RNase H activity of avian myeloblastosis virus reverse transcriptase.
    Champoux JJ; Gilboa E; Baltimore D
    J Virol; 1984 Mar; 49(3):686-91. PubMed ID: 6199510
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of the thermal stabilities of the αβ heterodimer and the α subunit of avian myeloblastosis virus reverse transcriptase.
    Konishi A; Nemoto D; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2011; 75(8):1618-20. PubMed ID: 21821920
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reverse transcriptase inhibits Taq polymerase activity.
    Sellner LN; Coelen RJ; Mackenzie JS
    Nucleic Acids Res; 1992 Apr; 20(7):1487-90. PubMed ID: 1374554
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Oligonucleotides and their derivatives as tools for investigations of protein-nucleic acid interactions in template biocatalysis.
    Lavrik OI
    Nucleic Acids Symp Ser; 1991; (24):185-8. PubMed ID: 1726742
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recognition of internal cleavage sites by retroviral RNases H.
    Schultz SJ; Zhang M; Champoux JJ
    J Mol Biol; 2004 Nov; 344(3):635-52. PubMed ID: 15533434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase.
    Georgiadis MM; Jessen SM; Ogata CM; Telesnitsky A; Goff SP; Hendrickson WA
    Structure; 1995 Sep; 3(9):879-92. PubMed ID: 8535782
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities.
    Blain SW; Goff SP
    J Biol Chem; 1993 Nov; 268(31):23585-92. PubMed ID: 7693692
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease.
    Oyama F; Kikuchi R; Crouch RJ; Uchida T
    J Biol Chem; 1989 Nov; 264(31):18808-17. PubMed ID: 2478553
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mutagenesis of Gln294 of the reverse transcriptase of human immunodeficiency virus type-2 and its effects on the ribonuclease H activity.
    Bochner R; Duvshani A; Adir N; Hizi A
    FEBS Lett; 2008 Aug; 582(18):2799-805. PubMed ID: 18625228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.