These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 19060330)
1. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Ettensohn CA Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330 [TBL] [Abstract][Full Text] [Related]
2. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. McCauley BS; Weideman EP; Hinman VF Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847 [TBL] [Abstract][Full Text] [Related]
3. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Rafiq K; Cheers MS; Ettensohn CA Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640 [TBL] [Abstract][Full Text] [Related]
4. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786 [TBL] [Abstract][Full Text] [Related]
5. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Shashikant T; Khor JM; Ettensohn CA Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451 [TBL] [Abstract][Full Text] [Related]
6. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Hinman VF; Cheatle Jarvela AM Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884 [TBL] [Abstract][Full Text] [Related]
7. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Sharma T; Ettensohn CA Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034 [TBL] [Abstract][Full Text] [Related]
8. Architecture and evolution of the Khor JM; Ettensohn CA Elife; 2022 Feb; 11():. PubMed ID: 35212624 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Rafiq K; Shashikant T; McManus CJ; Ettensohn CA Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631 [TBL] [Abstract][Full Text] [Related]
10. Echinoderm development and evolution in the post-genomic era. Cary GA; Hinman VF Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788 [TBL] [Abstract][Full Text] [Related]
11. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Hinman VF; Nguyen AT; Cameron RA; Davidson EH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011 [TBL] [Abstract][Full Text] [Related]
12. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Ettensohn CA; Guerrero-Santoro J; Khor JM Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981 [TBL] [Abstract][Full Text] [Related]
13. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Sharma T; Ettensohn CA Development; 2010 Apr; 137(7):1149-57. PubMed ID: 20181745 [TBL] [Abstract][Full Text] [Related]
15. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Revilla-i-Domingo R; Minokawa T; Davidson EH Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170 [TBL] [Abstract][Full Text] [Related]
16. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. Andrikou C; Pai CY; Su YH; Arnone MI Elife; 2015 Jul; 4():. PubMed ID: 26218224 [TBL] [Abstract][Full Text] [Related]
17. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Hinman VF; Yankura KA; McCauley BS Biochim Biophys Acta; 2009 Apr; 1789(4):326-32. PubMed ID: 19284985 [TBL] [Abstract][Full Text] [Related]
18. Gene regulatory networks and the evolution of animal body plans. Davidson EH; Erwin DH Science; 2006 Feb; 311(5762):796-800. PubMed ID: 16469913 [TBL] [Abstract][Full Text] [Related]