BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19060360)

  • 1. Automatic generation of time resolved motion vector fields of coronary arteries and 4D surface extraction using rotational x-ray angiography.
    Jandt U; Schäfer D; Grass M; Rasche V
    Phys Med Biol; 2009 Jan; 54(1):45-64. PubMed ID: 19060360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac motion-corrected iterative cone-beam CT reconstruction using a semi-automatic minimum cost path-based coronary centerline extraction.
    Isola AA; Metz CT; Schaap M; Klein S; Grass M; Niessen WJ
    Comput Med Imaging Graph; 2012 Apr; 36(3):215-26. PubMed ID: 22284861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection-based motion compensation for gated coronary artery reconstruction from rotational x-ray angiograms.
    Hansis E; Schäfer D; Dössel O; Grass M
    Phys Med Biol; 2008 Jul; 53(14):3807-20. PubMed ID: 18583730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography.
    Jandt U; Schäfer D; Grass M; Rasche V
    Med Image Anal; 2009 Dec; 13(6):846-58. PubMed ID: 19713148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using flow information to support 3D vessel reconstruction from rotational angiography.
    Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ
    Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography.
    Hansis E; Schäfer D; Dössel O; Grass M
    IEEE Trans Med Imaging; 2008 Nov; 27(11):1548-55. PubMed ID: 18955171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography.
    Andriotis A; Zifan A; Gavaises M; Liatsis P; Pantos I; Theodorakakos A; Efstathopoulos EP; Katritsis D
    Catheter Cardiovasc Interv; 2008 Jan; 71(1):28-43. PubMed ID: 18098180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography.
    Yang G; Kitslaar P; Frenay M; Broersen A; Boogers MJ; Bax JJ; Reiber JH; Dijkstra J
    Int J Cardiovasc Imaging; 2012 Apr; 28(4):921-33. PubMed ID: 21637981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of acquisition trajectories for 3D rotational coronary venography.
    Bi J; Grass M; Schäfer D
    Int J Comput Assist Radiol Surg; 2010 Jan; 5(1):19-28. PubMed ID: 20033496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical feasibility of a fully automated 3D reconstruction of rotational coronary X-ray angiograms.
    Neubauer AM; Garcia JA; Messenger JC; Hansis E; Kim MS; Klein AJ; Schoonenberg GA; Grass M; Carroll JD
    Circ Cardiovasc Interv; 2010 Feb; 3(1):71-9. PubMed ID: 20118152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary x-ray angiographic reconstruction and image orientation.
    Sprague K; Drangova M; Lehmann G; Slomka P; Levin D; Chow B; deKemp R
    Med Phys; 2006 Mar; 33(3):707-18. PubMed ID: 16878574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies.
    Hernandez-Vela A; Gatta C; Escalera S; Igual L; Martin-Yuste V; Sabate M; Radeva P
    IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1332-40. PubMed ID: 23033436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system.
    Hansis E; Carroll JD; Schäfer D; Dössel O; Grass M
    Med Phys; 2010 Apr; 37(4):1601-9. PubMed ID: 20443481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: a feasibility study.
    Lewis JH; Li R; Watkins WT; Lawson JD; Segars WP; Cerviño LI; Song WY; Jiang SB
    Phys Med Biol; 2010 May; 55(9):2505-22. PubMed ID: 20393232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic feature extraction of coronary artery motion using DSA image sequences.
    Puentes J; Roux C; Garreau M; Coatrieux JL
    IEEE Trans Med Imaging; 1998 Dec; 17(6):857-71. PubMed ID: 10048843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound.
    Danilouchkine MG; Mastik F; van der Steen AF
    Phys Med Biol; 2009 Mar; 54(6):1397-418. PubMed ID: 19218736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
    Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S
    Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for characterizing human coronary artery deformation from cardiac-gated computed tomography data.
    Choi G; Xiong G; Cheng CP; Taylor CA
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2582-92. PubMed ID: 24835123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.