BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19060373)

  • 1. [Biomechanical analysis of artificial intervertebral disc in a 3-dimensional finite-element model].
    Ge L; Li KH
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Nov; 33(11):1041-6. PubMed ID: 19060373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study.
    Strange DG; Fisher ST; Boughton PC; Kishen TJ; Diwan AD
    Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.
    Li H; Wang Z
    Comput Med Imaging Graph; 2006; 30(6-7):363-70. PubMed ID: 17074465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis.
    Lee SH; Im YJ; Kim KT; Kim YH; Park WM; Kim K
    Spine (Phila Pa 1976); 2011 Apr; 36(9):700-8. PubMed ID: 21245792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5: anatomic and finite element investigations.
    Ivanov AA; Faizan A; Ebraheim NA; Yeasting R; Goel VK
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2462-6. PubMed ID: 18090086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element application in implant research for treatment of lumbar degenerative disc disease.
    Zhang QH; Teo EC
    Med Eng Phys; 2008 Dec; 30(10):1246-56. PubMed ID: 18804398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISSLS prize winner: how loading rate influences disc failure mechanics: a microstructural assessment of internal disruption.
    Veres SP; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2010 Oct; 35(21):1897-908. PubMed ID: 20838275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study.
    Natarajan RN; Lavender SA; An HA; Andersson GB
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1958-65. PubMed ID: 18708928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y; Yoganandan N; Maiman DJ; Pintar FA
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of inhomogeneous rather than homogeneous poroelastic tissue material properties within disc annulus and nucleus better predicts cervical spine response: a C3-T1 finite element model analysis under compression and moment loadings.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Spine (Phila Pa 1976); 2011 Feb; 36(4):E245-55. PubMed ID: 21270714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative study of vertebral body stress distribution following insertion of artificial lumbar intervertebral disc].
    Xu YC; Liu SL; Zhang MC; Huang DS; Wang QY
    Zhonghua Wai Ke Za Zhi; 2004 Dec; 42(24):1485-8. PubMed ID: 15733478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM; Park C; Lee K; Lee S
    Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: a finite element study.
    Rousseau MA; Bonnet X; Skalli W
    Spine (Phila Pa 1976); 2008 Jan; 33(1):E10-4. PubMed ID: 18165735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.
    Moumene M; Geisler FH
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1840-51. PubMed ID: 17762291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.