These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19060975)

  • 1. Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes.
    Do DD; Do HD; Wongkoblap A; Nicholson D
    Phys Chem Chem Phys; 2008 Dec; 10(48):7293-303. PubMed ID: 19060975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Henry constant and isosteric heat at zero loading in gas phase adsorption.
    Do DD; Nicholson D; Do HD
    J Colloid Interface Sci; 2008 Aug; 324(1-2):15-24. PubMed ID: 18514681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of polar and non-polar fluids in carbon nanotube bundles: computer simulation and experimental studies.
    Wongkoblap A; Do DD; Wang K
    J Colloid Interface Sci; 2009 Mar; 331(1):65-76. PubMed ID: 19059598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation.
    Jiang J; Sandler SI
    Langmuir; 2004 Dec; 20(25):10910-8. PubMed ID: 15568840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the anatomy of the adsorption heat versus loading as a function of temperature and adsorbate for a graphitic surface.
    Do DD; Nicholson D; Do HD
    J Colloid Interface Sci; 2008 Sep; 325(1):7-22. PubMed ID: 18571188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data.
    Do DD; Do HD
    J Phys Chem B; 2006 Sep; 110(35):17531-8. PubMed ID: 16942095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffold.
    Biswas MM; Cagin T
    J Phys Chem B; 2010 Nov; 114(43):13752-63. PubMed ID: 20931989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface mediation on the adsorption isotherm and heat of adsorption of argon on graphitized thermal carbon black.
    Fan C; Birkett G; Do DD
    J Colloid Interface Sci; 2010 Feb; 342(2):485-92. PubMed ID: 19914630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading.
    Do DD; Do HD
    Langmuir; 2004 Dec; 20(25):10889-99. PubMed ID: 15568838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of gases in carbon nanotubes: are defect interstitial sites important?
    Labrosse MR; Shi W; Johnson JK
    Langmuir; 2008 Sep; 24(17):9430-9. PubMed ID: 18683959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water in contact with magnetite nanoparticles, as seen from experiments and computer simulations.
    Tombácz E; Hajdú A; Illés E; László K; Garberoglio G; Jedlovszky P
    Langmuir; 2009 Nov; 25(22):13007-14. PubMed ID: 19702278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appropriate volumes for adsorption isotherm studies: the absolute void volume, accessible pore volume and enclosing particle volume.
    Do DD; Do HD
    J Colloid Interface Sci; 2007 Dec; 316(2):317-30. PubMed ID: 17854818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differences in surfactant adsorption on carbon nanotubes and their bundles.
    Angelikopoulos P; Bock H
    Langmuir; 2010 Jan; 26(2):899-907. PubMed ID: 19839636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen adsorption on functionalized nanoporous activated carbons.
    Zhao XB; Xiao B; Fletcher AJ; Thomas KM
    J Phys Chem B; 2005 May; 109(18):8880-8. PubMed ID: 16852056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of water molecules inside a Au nanotube: a molecular dynamics study.
    Weng MH; Lee WJ; Ju SP; Chao CH; Hsieh NK; Chang JG; Chen HL
    J Chem Phys; 2008 May; 128(17):174705. PubMed ID: 18465934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air separation by single wall carbon nanotubes: thermodynamics and adsorptive selectivity.
    Arora G; Sandler SI
    J Chem Phys; 2005 Jul; 123(4):044705. PubMed ID: 16095382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.