These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19061417)

  • 1. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments.
    Xiong YL; Park D; Ooizumi T
    J Agric Food Chem; 2009 Jan; 57(1):153-9. PubMed ID: 19061417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein.
    Xiong YL; Blanchard SP; Ooizumi T; Ma Y
    J Food Sci; 2010 Mar; 75(2):C215-21. PubMed ID: 20492228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems.
    Park D; Xiong YL; Alderton AL; Ooizumi T
    J Agric Food Chem; 2006 Jun; 54(12):4445-51. PubMed ID: 16756379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of iron-catalyzed and metmyoglobin oxidizing systems on biochemical properties of yak muscle myofibrillar protein.
    Wang H; Song Y; Liu Z; Li M; Zhang L; Yu Q; Guo Z; Wei J
    Meat Sci; 2020 Aug; 166():108041. PubMed ID: 32330829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Agric Food Chem; 2012 Aug; 60(32):8020-7. PubMed ID: 22809283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curtailing Oxidation-Induced Loss of Myosin Gelling Potential by Pyrophosphate Through Shielding the S1 Subfragment.
    Liu Z; True AD; Xiong YL
    J Food Sci; 2015 Jul; 80(7):C1468-75. PubMed ID: 25990830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.
    Li C; Xiong YL
    Meat Sci; 2015 Oct; 108():97-105. PubMed ID: 26068405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of restricting factors that inhibit swelling of oxidized myofibrils during brine irrigation.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2009 Nov; 57(22):10999-1007. PubMed ID: 19919128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein carbonylation and structural changes in porcine myofibrillar protein exposed to metal ion-H
    Wang W; Jia X; Guo C; Pan J; Dong X; Li S
    Food Res Int; 2023 Nov; 173(Pt 2):113420. PubMed ID: 37803758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Food Sci; 2013 Jun; 78(6):C823-31. PubMed ID: 23627930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical susceptibility of myosin in chicken myofibrils subjected to hydroxyl radical oxidizing systems.
    Ooizumi T; Xiong YL
    J Agric Food Chem; 2004 Jun; 52(13):4303-7. PubMed ID: 15212484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.
    Wang X; Xiong YL; Sato H
    J Agric Food Chem; 2017 Sep; 65(38):8451-8458. PubMed ID: 28876922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation-initiated myosin subfragment cross-linking and structural instability differences between white and red muscle fiber types.
    Liu C; Xiong YL
    J Food Sci; 2015 Feb; 80(2):C288-97. PubMed ID: 25604073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein.
    Wang X; Xiong YL; Sato H; Kumazawa Y
    J Agric Food Chem; 2016 Dec; 64(50):9523-9531. PubMed ID: 27936702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Role (Anti- and Pro-oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in Vitro Digestion.
    Cao Y; True AD; Chen J; Xiong YL
    J Agric Food Chem; 2016 Apr; 64(15):3054-61. PubMed ID: 27003685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of porcine Myosin by hypervalent myoglobin: the role of thiol groups.
    Frederiksen AM; Lund MN; Andersen ML; Skibsted LH
    J Agric Food Chem; 2008 May; 56(9):3297-304. PubMed ID: 18393506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin.
    Liu G; Xiong YL
    J Agric Food Chem; 2000 Mar; 48(3):624-30. PubMed ID: 10725125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oxidation on the physicochemical properties and degradation of mutton myofibrillar proteins.
    Lei Y; Deng X; Zhang Z; Guo X; Zhang J
    J Food Sci; 2022 Jul; 87(7):2932-2942. PubMed ID: 35638344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature induced denaturation of myosin: evidence of structural alterations of myosin subfragment-1.
    Liu J; Puolanne E; Ertbjerg P
    Meat Sci; 2014 Oct; 98(2):124-8. PubMed ID: 24927048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Biomarker of Myofibrillar Protein Oxidation in Raw and Cooked Ham: 3-Nitrotyrosine Formed by Nitrosation.
    Feng X; Li C; Ullah N; Hackman RM; Chen L; Zhou G
    J Agric Food Chem; 2015 Dec; 63(51):10957-64. PubMed ID: 26593775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.