These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19061509)
21. SEVERITAS: An externally validated mortality prediction for critically ill patients in low and middle-income countries. Deliberato RO; Escudero GG; Bulgarelli L; Neto AS; Ko SQ; Campos NS; Saat B; Amaro E; Lopes FS; Johnson AE Int J Med Inform; 2019 Nov; 131():103959. PubMed ID: 31539837 [TBL] [Abstract][Full Text] [Related]
22. Outcome prediction for critically ill cirrhotic patients: a comparison of APACHE II and Child-Pugh scoring systems. Ho YP; Chen YC; Yang C; Lien JM; Chu YY; Fang JT; Chiu CT; Chen PC; Tsai MH J Intensive Care Med; 2004; 19(2):105-10. PubMed ID: 15070520 [TBL] [Abstract][Full Text] [Related]
23. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
24. SAPS 3 at dialysis commencement is predictive of hospital mortality in patients supported by extracorporeal membrane oxygenation and acute dialysis. Tsai CW; Lin YF; Wu VC; Chu TS; Chen YM; Hu FC; Wu KD; Ko WJ; Eur J Cardiothorac Surg; 2008 Dec; 34(6):1158-64. PubMed ID: 18757205 [TBL] [Abstract][Full Text] [Related]
25. Efficacy of the APACHE II score at ICU discharge in predicting post-ICU mortality and ICU readmission in critically ill surgical patients. Lee H; Lim CW; Hong HP; Ju JW; Jeon YT; Hwang JW; Park HP Anaesth Intensive Care; 2015 Mar; 43(2):175-86. PubMed ID: 25735682 [TBL] [Abstract][Full Text] [Related]
26. Is 'gut feeling' by medical staff better than validated scores in estimation of mortality in a medical intensive care unit? - The prospective FEELING-ON-ICU study. Radtke A; Pfister R; Kuhr K; Kochanek M; Michels G J Crit Care; 2017 Oct; 41():204-208. PubMed ID: 28577477 [TBL] [Abstract][Full Text] [Related]
27. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
28. Calibration and discrimination by daily Logistic Organ Dysfunction scoring comparatively with daily Sequential Organ Failure Assessment scoring for predicting hospital mortality in critically ill patients. Timsit JF; Fosse JP; Troché G; De Lassence A; Alberti C; Garrouste-Orgeas M; Bornstain C; Adrie C; Cheval C; Chevret S; Crit Care Med; 2002 Sep; 30(9):2003-13. PubMed ID: 12352033 [TBL] [Abstract][Full Text] [Related]
29. Verification of the Acute Physiology and Chronic Health Evaluation scoring system in a Hong Kong intensive care unit. Oh TE; Hutchinson R; Short S; Buckley T; Lin E; Leung D Crit Care Med; 1993 May; 21(5):698-705. PubMed ID: 8482091 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of two outcome prediction models on an independent database. Moreno R; Miranda DR; Fidler V; Van Schilfgaarde R Crit Care Med; 1998 Jan; 26(1):50-61. PubMed ID: 9428543 [TBL] [Abstract][Full Text] [Related]
31. Prediction of ICU mortality in critically ill children : Comparison of SOFA, GCS, and FOUR score. Ramazani J; Hosseini M Med Klin Intensivmed Notfmed; 2019 Nov; 114(8):717-723. PubMed ID: 30276565 [TBL] [Abstract][Full Text] [Related]
32. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Clermont G; Angus DC; DiRusso SM; Griffin M; Linde-Zwirble WT Crit Care Med; 2001 Feb; 29(2):291-6. PubMed ID: 11246308 [TBL] [Abstract][Full Text] [Related]
33. Outcomes and prognostic factors in patients with haematological malignancy admitted to a specialist cancer intensive care unit: a 5 yr study. Bird GT; Farquhar-Smith P; Wigmore T; Potter M; Gruber PC Br J Anaesth; 2012 Mar; 108(3):452-9. PubMed ID: 22298243 [TBL] [Abstract][Full Text] [Related]
34. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Hsieh MH; Hsieh MJ; Chen CM; Hsieh CC; Chao CM; Lai CC Sci Rep; 2018 Nov; 8(1):17116. PubMed ID: 30459331 [TBL] [Abstract][Full Text] [Related]
35. Predicting the risk of death in patients in intensive care unit. Saadat-Niaki A; Abtahi D Arch Iran Med; 2007 Jul; 10(3):321-6. PubMed ID: 17604468 [TBL] [Abstract][Full Text] [Related]
36. Comparison of the APACHE III, APACHE II and Glasgow Coma Scale in acute head injury for prediction of mortality and functional outcome. Cho DY; Wang YC Intensive Care Med; 1997 Jan; 23(1):77-84. PubMed ID: 9037644 [TBL] [Abstract][Full Text] [Related]
37. Prognostic factors in critically ill cancer patients admitted to the intensive care unit. Aygencel G; Turkoglu M; Turkoz Sucak G; Benekli M J Crit Care; 2014 Aug; 29(4):618-26. PubMed ID: 24612762 [TBL] [Abstract][Full Text] [Related]
38. Comparison of multiple organ dysfunction scores in the prediction of hospital mortality in the critically ill. Pettilä V; Pettilä M; Sarna S; Voutilainen P; Takkunen O Crit Care Med; 2002 Aug; 30(8):1705-11. PubMed ID: 12163780 [TBL] [Abstract][Full Text] [Related]
39. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
40. Combining sequential organ failure assessment (SOFA) score with acute physiology and chronic health evaluation (APACHE) II score to predict hospital mortality of critically ill patients. Ho KM Anaesth Intensive Care; 2007 Aug; 35(4):515-21. PubMed ID: 18020069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]