These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19061547)

  • 1. Attractor and Lyapunov models for reach and grasp movements with application to robot-assisted therapy.
    Guastello SJ; Nathan DE; Johnson MJ
    Nonlinear Dynamics Psychol Life Sci; 2009 Jan; 13(1):99-121. PubMed ID: 19061547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Should object function matter during modeling of functional reach-to-grasp tasks in robot-assisted therapy?
    Nathan DE; Johnson MJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5695-8. PubMed ID: 17947163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of the Intention to Grasp During Reaching in Stroke Using Inertial Sensing.
    van Ommeren AL; Sawaryn B; Prange-Lasonder GB; Buurke JH; Rietman JS; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2128-2134. PubMed ID: 31545733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.
    Nathan DE; Johnson MJ; McGuire JR
    J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of grasp versus reach in people with hemiparesis poststroke.
    Lang CE; Wagner JM; Edwards DF; Sahrmann SA; Dromerick AW
    Neurorehabil Neural Repair; 2006 Dec; 20(4):444-54. PubMed ID: 17082499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotics-assisted visual-motor training influences arm position sense in three-dimensional space.
    Valdés BA; Khoshnam M; Neva JL; Menon C
    J Neuroeng Rehabil; 2020 Jul; 17(1):96. PubMed ID: 32664955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manual asymmetries in grasp pre-shaping and transport-grasp coordination.
    Tretriluxana J; Gordon J; Winstein CJ
    Exp Brain Res; 2008 Jun; 188(2):305-15. PubMed ID: 18437369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.
    Lin KC; Wu CY; Wei TH; Lee CY; Liu JS
    Clin Rehabil; 2007 Dec; 21(12):1075-86. PubMed ID: 18042603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive reach and grasp with functional electrical stimulation and robotic arm support.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3085-9. PubMed ID: 25570643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parkinson's disease: reorganization of the reach to grasp movement in response to perturbation of the distal motor patterning.
    Castiello U; Bennett KM
    Neuropsychologia; 1994 Nov; 32(11):1367-82. PubMed ID: 7877745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stroke rehabilitation reaches a threshold.
    Han CE; Arbib MA; Schweighofer N
    PLoS Comput Biol; 2008 Aug; 4(8):e1000133. PubMed ID: 18769588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.
    Carpinella I; Cattaneo D; Bertoni R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):351-60. PubMed ID: 22623407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of reach and grasp robot-assisted therapy suggests similar functional recovery patterns on proximal and distal arm segments in sub-acute hemiplegia.
    Loureiro RC; Harwin WS; Lamperd R; Collin C
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):593-602. PubMed ID: 23744701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.