These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 19061548)

  • 1. Complexity of postural control in infants: linear and nonlinear features revealed by principal component analysis.
    Harbourne RT; Deffeyes JE; Kyvelidou A; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2009 Jan; 13(1):123-44. PubMed ID: 19061548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear analysis of sitting postural sway indicates developmental delay in infants.
    Deffeyes JE; Harbourne RT; Kyvelidou A; Stuberg WA; Stergiou N
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):564-70. PubMed ID: 19493596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear detrended fluctuation analysis of sitting center-of-pressure data as an early measure of motor development pathology in infants.
    Deffeyes JE; Kochi N; Harbourne RT; Kyvelidou A; Stuberg WA; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):351-68. PubMed ID: 19781135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of distinct characteristics of postural sway in Parkinson's disease: a feature selection procedure based on principal component analysis.
    Rocchi L; Chiari L; Cappello A; Horak FB
    Neurosci Lett; 2006 Feb; 394(2):140-5. PubMed ID: 16269212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear analysis of the development of sitting postural control.
    Harbourne RT; Stergiou N
    Dev Psychobiol; 2003 May; 42(4):368-77. PubMed ID: 12672087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two steps forward and one back: Learning to walk affects infants' sitting posture.
    Chen LC; Metcalfe JS; Jeka JJ; Clark JE
    Infant Behav Dev; 2007 Feb; 30(1):16-25. PubMed ID: 17292776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased dynamical complexity during quiet stance in children with autism spectrum disorders.
    Fournier KA; Amano S; Radonovich KJ; Bleser TM; Hass CJ
    Gait Posture; 2014; 39(1):420-3. PubMed ID: 24055002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Center of pressure and the projection of the time-course of sitting skill acquisition.
    Haworth JL; Harbourne RT; Vallabhajosula S; Stergiou N
    Gait Posture; 2013 Sep; 38(4):806-11. PubMed ID: 23602446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posturographic measures in healthy young adults during quiet sitting in comparison with quiet standing.
    Vette AH; Masani K; Sin V; Popovic MR
    Med Eng Phys; 2010 Jan; 32(1):32-8. PubMed ID: 19884033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential time- and frequency-dependent structure of postural sway and finger tremor in Parkinson's disease.
    Morrison S; Kerr G; Newell KM; Silburn PA
    Neurosci Lett; 2008 Oct; 443(3):123-8. PubMed ID: 18682273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of linear versus sigmoid coding of visual or audio biofeedback for the control of upright stance.
    Dozza M; Chiari L; Hlavacka F; Cappello A; Horak FB
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):505-12. PubMed ID: 17190042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults.
    Lubetzky AV; Price R; Ciol MA; Kelly VE; McCoy SW
    Somatosens Mot Res; 2015; 32(4):211-8. PubMed ID: 26370065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation dimension estimates of human postural sway.
    Gurses S; Celik H
    Hum Mov Sci; 2013 Feb; 32(1):48-64. PubMed ID: 23357109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamical structure of sway path during standing in patients with multiple sclerosis and in healthy controls is affected by changes in sensory input and cognitive load.
    Negahban H; Sanjari MA; Mofateh R; Parnianpour M
    Neurosci Lett; 2013 Oct; 553():126-31. PubMed ID: 23973306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural sway of human infants while standing in light and dark.
    Ashmead DH; McCarty ME
    Child Dev; 1991 Dec; 62(6):1276-87. PubMed ID: 1786715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate entropy used to assess sitting postural sway of infants with developmental delay.
    Deffeyes JE; Harbourne RT; Stuberg WA; Stergiou N
    Infant Behav Dev; 2011 Feb; 34(1):81-99. PubMed ID: 21129778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new interpretation of spontaneous sway measures based on a simple model of human postural control.
    Maurer C; Peterka RJ
    J Neurophysiol; 2005 Jan; 93(1):189-200. PubMed ID: 15331614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of center of pressure measures for assessing the development of sitting postural control in infants with or at risk of cerebral palsy.
    Kyvelidou A; Harbourne RT; Shostrom VK; Stergiou N
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1593-601. PubMed ID: 20875520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary sway and rapid orthogonal transitions of voluntary sway in young adults, and low and high fall-risk older adults.
    Tucker MG; Kavanagh JJ; Morrison S; Barrett RS
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):597-605. PubMed ID: 19564063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related complexity and coupling of children's sitting posture.
    Hong SL; James EG; Newell KM
    Dev Psychobiol; 2008 Jul; 50(5):502-10. PubMed ID: 18551466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.