BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 19061836)

  • 1. Distinct thresholds govern Myc's biological output in vivo.
    Murphy DJ; Junttila MR; Pouyet L; Karnezis A; Shchors K; Bui DA; Brown-Swigart L; Johnson L; Evan GI
    Cancer Cell; 2008 Dec; 14(6):447-57. PubMed ID: 19061836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental context determines latency of MYC-induced tumorigenesis.
    Beer S; Zetterberg A; Ihrie RA; McTaggart RA; Yang Q; Bradon N; Arvanitis C; Attardi LD; Feng S; Ruebner B; Cardiff RD; Felsher DW
    PLoS Biol; 2004 Nov; 2(11):e332. PubMed ID: 15455033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ARF tumor suppressor: keeping Myc on a leash.
    Gregory MA; Qi Y; Hann SR
    Cell Cycle; 2005 Feb; 4(2):249-52. PubMed ID: 15655352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism.
    Boone DN; Qi Y; Li Z; Hann SR
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):632-7. PubMed ID: 21187408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p19ARF directly and differentially controls the functions of c-Myc independently of p53.
    Qi Y; Gregory MA; Li Z; Brousal JP; West K; Hann SR
    Nature; 2004 Oct; 431(7009):712-7. PubMed ID: 15361884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc.
    Pusapati RV; Rounbehler RJ; Hong S; Powers JT; Yan M; Kiguchi K; McArthur MJ; Wong PK; Johnson DG
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1446-51. PubMed ID: 16432227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL.
    Maclean KH; Keller UB; Rodriguez-Galindo C; Nilsson JA; Cleveland JL
    Mol Cell Biol; 2003 Oct; 23(20):7256-70. PubMed ID: 14517295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenes and the DNA damage response: Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis.
    Hong S; Pusapati RV; Powers JT; Johnson DG
    Cell Cycle; 2006 Apr; 5(8):801-3. PubMed ID: 16582589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MYC leads the way.
    Venkateswaran N; Conacci-Sorrell M
    Small GTPases; 2020 Mar; 11(2):86-94. PubMed ID: 29173017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYC, Metabolism, and Cancer.
    Stine ZE; Walton ZE; Altman BJ; Hsieh AL; Dang CV
    Cancer Discov; 2015 Oct; 5(10):1024-39. PubMed ID: 26382145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYC-driven malignant transformation of mature murine B cells requires inhibition of both intrinsic apoptosis and p53 activity.
    Högstrand K; Grandien A
    Eur J Immunol; 2019 Mar; 49(3):375-385. PubMed ID: 30281155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells.
    Valsesia-Wittmann S; Magdeleine M; Dupasquier S; Garin E; Jallas AC; Combaret V; Krause A; Leissner P; Puisieux A
    Cancer Cell; 2004 Dec; 6(6):625-30. PubMed ID: 15607966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis.
    Eischen CM; Roussel MF; Korsmeyer SJ; Cleveland JL
    Mol Cell Biol; 2001 Nov; 21(22):7653-62. PubMed ID: 11604501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways.
    Meng X; Carlson NR; Dong J; Zhang Y
    Oncogene; 2015 Nov; 34(46):5709-17. PubMed ID: 25823025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of senescence and prosurvival signaling in controlling the oncogenic activity of FGFR2 mutants associated with cancer and birth defects.
    Ota S; Zhou ZQ; Link JM; Hurlin PJ
    Hum Mol Genet; 2009 Jul; 18(14):2609-21. PubMed ID: 19403560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC and tumor metabolism: chicken and egg.
    Dejure FR; Eilers M
    EMBO J; 2017 Dec; 36(23):3409-3420. PubMed ID: 29127156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Arf tumor suppressor in Emicro-Myc transgenic mice: longitudinal study of Myc-induced lymphomagenesis.
    Bertwistle D; Sherr CJ
    Blood; 2007 Jan; 109(2):792-4. PubMed ID: 16968893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity.
    Hay J; Gilroy K; Huser C; Kilbey A; Mcdonald A; MacCallum A; Holroyd A; Cameron E; Neil JC
    J Cell Biochem; 2019 Oct; 120(10):18332-18345. PubMed ID: 31257681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
    Nilsson JA; Keller UB; Baudino TA; Yang C; Norton S; Old JA; Nilsson LM; Neale G; Kramer DL; Porter CW; Cleveland JL
    Cancer Cell; 2005 May; 7(5):433-44. PubMed ID: 15894264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis.
    Yu D; Thomas-Tikhonenko A
    Oncogene; 2002 Mar; 21(12):1922-7. PubMed ID: 11896625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.