BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19062069)

  • 1. Behavior of sprayed tricyclazole in rice paddy lysimeters.
    Phong TK; Nhung DT; Yamazaki K; Takagi K; Watanabe H
    Chemosphere; 2009 Feb; 74(8):1085-9. PubMed ID: 19062069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated rainfall removal of tricyclazole sprayed on rice foliage.
    Phong TK; Nhung DT; Yamazaki K; Takagi K; Watanabe H
    Bull Environ Contam Toxicol; 2008 May; 80(5):438-42. PubMed ID: 18488130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues and dynamics of probenazole in rice field ecosystem.
    Yi X; Lu Y
    Chemosphere; 2006 Oct; 65(4):639-43. PubMed ID: 16529792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring tricyclazole residues in rice paddy watersheds.
    Padovani L; Capri E; Padovani C; Puglisi E; Trevisan M
    Chemosphere; 2006 Jan; 62(2):303-14. PubMed ID: 15996714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation kinetics and risk assessments of tricyclazole during Oryza sativa L. growing, processing and storage.
    Meng Z; Chen X; Guan L; Xu Z; Zhang Q; Song Y; Liu F; Fan T
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35249-35256. PubMed ID: 30341752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preliminary study on radiant spectra of the leaves of paddy and upland rice].
    Peng Y; Wang H; He D
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):269-72. PubMed ID: 15810266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high performance liquid chromatography tandem high-resolution mass spectrometry study of tricyclazole photodegradation products in water.
    Gosetti F; Chiuminatto U; Mazzucco E; Mastroianni R; Bolfi B; Marengo E
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8288-95. PubMed ID: 25529495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of tricyclazole content in paddy rice by surface enhanced Raman spectroscopy.
    Tang H; Fang D; Li Q; Cao P; Geng J; Sui T; Wang X; Iqbal J; Du Y
    J Food Sci; 2012 May; 77(5):T105-9. PubMed ID: 22489549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues and dynamics of pymetrozine in rice field ecosystem.
    Li C; Yang T; Huangfu W; Wu Y
    Chemosphere; 2011 Feb; 82(6):901-4. PubMed ID: 21074245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of tricyclazole: Effect of moisture, soil type, elevated carbon dioxide and Blue Green Algae (BGA).
    Kumar N; Mukherjee I; Sarkar B; Paul RK
    J Hazard Mater; 2017 Jan; 321():517-527. PubMed ID: 27676078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia.
    Hayashi K; Nishimura S; Yagi K
    Sci Total Environ; 2008 Feb; 390(2-3):485-94. PubMed ID: 18054067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of butachlor and pyrazosulfuron-ethyl in paddy water using micro paddy lysimeters under different temperature conditions in spring and summer.
    Ok J; Doan NH; Watanabe H; Thuyet DQ; Boulange J
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):306-11. PubMed ID: 22696099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residues of the fungicide epoxiconazole in rice and paddy in the Chinese field ecosystem.
    Yan B; Ye F; Gao D
    Pest Manag Sci; 2015 Jan; 71(1):65-71. PubMed ID: 24550150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems.
    Tsochatzis ED; Tzimou-Tsitouridou R; Menkissoglu-Spiroudi U; Karpouzas DG; Katsantonis D
    Chemosphere; 2013 May; 91(7):1049-57. PubMed ID: 23507498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreduction of chlorothalonil fungicide on plant leaf models.
    Monadjemi S; El Roz M; Richard C; Ter Halle A
    Environ Sci Technol; 2011 Nov; 45(22):9582-9. PubMed ID: 21950599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem.
    Zhang C; Hu X; Zhao H; Wu M; He H; Zhang C; Tang T; Ping L; Li Z
    Chemosphere; 2013 Sep; 93(1):190-5. PubMed ID: 23800585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of Cry1Ab protein from Bt transgenic rice in aerobic and flooded paddy soils.
    Wang H; Ye Q; Gan J; Wu L
    J Agric Food Chem; 2007 Mar; 55(5):1900-4. PubMed ID: 17288444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model development for nutrient loading estimates from paddy rice fields in Korea.
    Jeon JH; Yoon CG; Ham JH; Jung KW
    J Environ Sci Health B; 2004; 39(5-6):845-60. PubMed ID: 15620091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of photolysis and hydrolysis of pyraclostrobin in aqueous solutions and its degradation products in paddy water.
    Zeng LR; Shi LH; Meng XG; Xu J; Jia GF; Gui T; Zhang YP; Hu Y
    J Environ Sci Health B; 2019; 54(4):317-325. PubMed ID: 30729870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.