These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19062128)

  • 21. Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media.
    Ray C; Vogel T; Dusek J
    J Contam Hydrol; 2004 May; 70(1-2):63-87. PubMed ID: 15068869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo analysis of field water flow comparing uni- and bimodal effective hydraulic parameters for structured soil.
    Coppola A; Basile A; Comegna A; Lamaddalena N
    J Contam Hydrol; 2009 Feb; 104(1-4):153-65. PubMed ID: 19027986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The kinetics of sorption by retarded diffusion into soil aggregate pores.
    Villaverde J; van Beinum W; Beulke S; Brown CD
    Environ Sci Technol; 2009 Nov; 43(21):8227-32. PubMed ID: 19924948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
    Cey EE; Rudolph DL; Passmore J
    J Contam Hydrol; 2009 Jun; 107(1-2):45-57. PubMed ID: 19435645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of biological clogging in unsaturated porous media.
    Soleimani S; Van Geel PJ; Isgor OB; Mostafa MB
    J Contam Hydrol; 2009 Apr; 106(1-2):39-50. PubMed ID: 19201505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameter and observation importance in modelling virus transport in saturated porous media-investigations in a homogenous system.
    Barth GR; Hill MC
    J Contam Hydrol; 2005 Nov; 80(3-4):107-29. PubMed ID: 16202474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types.
    Kočárek M; Kodešová R; Vondráčková L; Golovko O; Fér M; Klement A; Nikodem A; Jakšík O; Grabic R
    Environ Pollut; 2016 Nov; 218():563-573. PubMed ID: 27460901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of movement of pesticides towards drains with a preferential flow version of PEARL.
    Tiktak A; Hendriks RF; Boesten JJ
    Pest Manag Sci; 2012 Feb; 68(2):290-302. PubMed ID: 22223200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport and reduction of nitrate in clayey till underneath forest and arable land.
    Jørgensen PR; Urup J; Helstrup T; Jensen MB; Eiland F; Vinther FP
    J Contam Hydrol; 2004 Sep; 73(1-4):207-26. PubMed ID: 15336795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.
    Kahl G; Ingwersen J; Totrakool S; Pansombat K; Thavornyutikarn P; Streck T
    J Environ Qual; 2010; 39(1):353-64. PubMed ID: 20048323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales.
    Holman IP; Dubus IG; Hollis JM; Brown CD
    Sci Total Environ; 2004 Jan; 318(1-3):73-88. PubMed ID: 14654276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-pathway pore model describes extensive transport data from Mammalian microvascular beds and frog microvessels.
    Wolf MB
    Microcirculation; 2002 Dec; 9(6):497-511. PubMed ID: 12483547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.
    Novakowski KS; Bickerton G; Lapcevic P
    J Contam Hydrol; 2004 Sep; 73(1-4):227-47. PubMed ID: 15336796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Air distribution in the Borden aquifer during in situ air sparging.
    Tomlinson DW; Thomson NR; Johnson RL; Redman JD
    J Contam Hydrol; 2003 Dec; 67(1-4):113-32. PubMed ID: 14607473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of model applications for structured soils: a) Water flow and tracer transport.
    Köhne JM; Köhne S; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):4-35. PubMed ID: 19012994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.
    Bumgarner JR; McCray JE
    Water Res; 2007 Jun; 41(11):2349-60. PubMed ID: 17449084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring fluid flow properties of waste and assessing alternative conceptual models of pore structure.
    Han B; Scicchitano V; Imhoff PT
    Waste Manag; 2011 Mar; 31(3):445-56. PubMed ID: 20970978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-continuum analysis of a cadmium tracer field experiment.
    Vogel T; Lichner L; Dusek J; Cipakova A
    J Contam Hydrol; 2007 Jun; 92(1-2):50-65. PubMed ID: 17292998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.
    Beal CD; Gardner EA; Kirchhof G; Menzies NW
    Water Res; 2006 Jul; 40(12):2327-38. PubMed ID: 16764900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.