BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 19062144)

  • 1. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses.
    van Gestel CA; Koolhaas JE; Hamers T; van Hoppe M; van Roovert M; Korsman C; Reinecke SA
    Environ Pollut; 2009 Mar; 157(3):895-903. PubMed ID: 19062144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands.
    Bleeker EA; van Gestel CA
    Environ Pollut; 2007 Aug; 148(3):824-32. PubMed ID: 17376569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation in earthworms inhabiting floodplain soils.
    Vijver MG; Vink JP; Miermans CJ; van Gestel CA
    Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance and applicability of a simple earthworm biomarker of copper exposure. II. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus.
    Svendsen C; Weeks JM
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):80-8. PubMed ID: 9056404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils.
    Svendsen C; Hankard PK; Lister LJ; Fishwick SK; Jonker MJ; Spurgeon DJ
    Environ Pollut; 2007 May; 147(1):83-93. PubMed ID: 17045713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?
    Rozema J; Notten MJ; Aerts R; van Gestel CA; Hobbelen PH; Hamers TH
    Sci Total Environ; 2008 Dec; 406(3):443-8. PubMed ID: 18707753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil.
    Xiao NW; Song Y; Ge F; Liu XH; Ou-Yang ZY
    Chemosphere; 2006 Nov; 65(6):907-12. PubMed ID: 16682071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction.
    Smith BA; Greenberg B; Stephenson GL
    Chemosphere; 2010 Oct; 81(6):755-66. PubMed ID: 20678790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heavy metals on earthworms along contamination gradients in organic rich soils.
    Lukkari T; Taavitsainen M; Väisänen A; Haimi J
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):340-8. PubMed ID: 15388274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance and applicability of a simple earthworm biomarker of copper exposure. I. Links to ecological effects in a laboratory study with Eisenia andrei.
    Svendsen C; Weeks JM
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):72-9. PubMed ID: 9056403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils.
    Berthelot Y; Valton E; Auroy A; Trottier B; Robidoux PY
    Chemosphere; 2008 Dec; 74(1):166-77. PubMed ID: 18829064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils.
    Lee BT; Kim KW
    Environ Toxicol; 2009 Aug; 24(4):369-76. PubMed ID: 18825726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal concentrations in soil and earthworms in a floodplain grassland.
    van Vliet PC; van der Zee SE; Ma WC
    Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?
    Klobučar GI; Stambuk A; Srut M; Husnjak I; Merkaš M; Traven L; Cvetković Z
    Environ Pollut; 2011 Apr; 159(4):841-9. PubMed ID: 21292364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals.
    Klok C; Goedhart PW; Vandecasteele B
    Environ Pollut; 2007 May; 147(1):26-31. PubMed ID: 17070636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of historic metal(loid) pollution on earthworm communities.
    Lévêque T; Capowiez Y; Schreck E; Mombo S; Mazzia C; Foucault Y; Dumat C
    Sci Total Environ; 2015 Apr; 511():738-46. PubMed ID: 25616191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.