These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19062791)

  • 1. Modeling of axisymmetric wave modes in a poroelastic cylinder using spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Oct; 124(4):EL230-5. PubMed ID: 19062791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of wave dispersion along cylindrical structures using the spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Aug; 124(2):859-65. PubMed ID: 18681578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid.
    van Dalen KN; Drijkoningen GG; Smeulders DM
    J Acoust Soc Am; 2010 Apr; 127(4):2240-51. PubMed ID: 20370005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled hydrodynamic-acoustic modeling of sound generated by impacting cylindrical water jets.
    Chen X; Means SL; Szymczak WG; Rogers JC
    J Acoust Soc Am; 2008 Aug; 124(2):841-50. PubMed ID: 18681576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings.
    Mu J; Rose JL
    J Acoust Soc Am; 2008 Aug; 124(2):866-74. PubMed ID: 18681579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation.
    Jiangong Y; Bin W; Cunfu H
    Ultrasonics; 2010 Mar; 50(3):416-23. PubMed ID: 19857886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.
    Nennig B; Perrey-Debain E; Ben Tahar M
    J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The room acoustic rendering equation.
    Siltanen S; Lokki T; Kiminki S; Savioja L
    J Acoust Soc Am; 2007 Sep; 122(3):1624. PubMed ID: 17927422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
    Ogam E; Fellah ZE; Baki P
    J Acoust Soc Am; 2013 Mar; 133(3):1443-57. PubMed ID: 23464016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high-frequency dispersion coefficient for the Rayleigh velocity in a vertically inhomogeneous anisotropic half-space.
    Shuvalov AL
    J Acoust Soc Am; 2008 May; 123(5):2484-7. PubMed ID: 18529166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative method for plotting dispersion curves.
    Honarvar F; Enjilela E; Sinclair AN
    Ultrasonics; 2009 Jan; 49(1):15-8. PubMed ID: 18727996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansions of reflected-transmitted signals to estimate the slow wave strength in fluid-saturated porous layers.
    Franklin H; Derible S; Popa C
    J Acoust Soc Am; 2010 Sep; 128(3):1073-86. PubMed ID: 20815444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact and approximate analysis of surface acoustic waves in an infinite elastic plate with a thin metal layer.
    Wang J; Du J; Lu W; Mao H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e941-5. PubMed ID: 16970968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of dispersion relations for axially symmetric guided waves in cylindrical structures by means of a spectral decomposition method.
    Höhne C; Prager J; Gravenkamp H
    Ultrasonics; 2015 Dec; 63():54-64. PubMed ID: 26126952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
    de Barros L; Dietrich M
    J Acoust Soc Am; 2008 Mar; 123(3):1409-20. PubMed ID: 18345830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and asymptotic approach for evaluating complex wavenumbers of guided modes in viscoelastic plates.
    Zakharov D; Castaings M; Singh D
    J Acoust Soc Am; 2011 Aug; 130(2):764-71. PubMed ID: 21877792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.