These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19063955)

  • 1. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):100-11. PubMed ID: 19063955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical model description of peripheral neural excitation in cochlear implant recipients: 4. model development at low pulse rates: general model and application to individuals.
    Cohen LT
    Hear Res; 2009 Feb; 248(1-2):15-30. PubMed ID: 19110049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):112-21. PubMed ID: 19068227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical model description of peripheral neural excitation in cochlear implant recipients: 5. refractory recovery and facilitation.
    Cohen LT
    Hear Res; 2009 Feb; 248(1-2):1-14. PubMed ID: 19110048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.
    Briaire JJ; Frijns JH
    Hear Res; 2006 Apr; 214(1-2):17-27. PubMed ID: 16520009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode interaction in cochlear implant recipients: comparison of straight and contour electrode arrays.
    Xi X; Ji F; Han D; Hong M; Chen A
    ORL J Otorhinolaryngol Relat Spec; 2009; 71(4):228-37. PubMed ID: 19707042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness.
    Botros A; Psarros C
    Ear Hear; 2010 Jun; 31(3):380-91. PubMed ID: 20090532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the electrically evoked compound action potential (ECAP) recorded from nucleus CI24 cochlear implant users.
    Clay KM; Brown CJ
    Ear Hear; 2007 Dec; 28(6):850-61. PubMed ID: 17982371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence.
    Botros A; van Dijk B; Killian M
    Artif Intell Med; 2007 May; 40(1):15-28. PubMed ID: 16920343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial spread of neural excitation: comparison of compound action potential and forward-masking data in cochlear implant recipients.
    Cohen LT; Saunders E; Richardson LM
    Int J Audiol; 2004 Jun; 43(6):346-55. PubMed ID: 15457817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of peri-modiolar cochlear implant positioning on auditory nerve responses: a neural response telemetry study.
    van Weert S; Stokroos RJ; Rikers MM; van Dijk P
    Acta Otolaryngol; 2005 Jul; 125(7):725-31. PubMed ID: 16012034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial results from a model of ephaptic excitation in the electrically excited peripheral auditory nervous system.
    Jönsson R; Hanekom T; Hanekom JJ
    Hear Res; 2008 Mar; 237(1-2):49-56. PubMed ID: 18255244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.
    Cartee LA; Miller CA; van den Honert C
    Hear Res; 2006 May; 215(1-2):10-21. PubMed ID: 16624511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the electrically evoked compound action potential.
    Briaire JJ; Frijns JH
    Hear Res; 2005 Jul; 205(1-2):143-56. PubMed ID: 15953524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements.
    Spelman FA; Pfingst BE; Clopton BM; Jolly CN; Rodenhiser KL
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():131-6. PubMed ID: 7668604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking.
    Cohen LT; Richardson LM; Saunders E; Cowan RS
    Hear Res; 2003 May; 179(1-2):72-87. PubMed ID: 12742240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ECAP spread of excitation with virtual channels and physical electrodes.
    Hughes ML; Stille LJ; Baudhuin JL; Goehring JL
    Hear Res; 2013 Dec; 306():93-103. PubMed ID: 24095669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.