These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 19064107)
1. High performance protein microarrays based on glycidyl methacrylate-modified polyethylene terephthalate plastic substrate. Liu Y; Li CM; Hu W; Lu Z Talanta; 2009 Jan; 77(3):1165-71. PubMed ID: 19064107 [TBL] [Abstract][Full Text] [Related]
2. AFM study of the morphologic change of HDPE surface photografted with glycidyl methacrylate. Wang H; Han J J Colloid Interface Sci; 2009 May; 333(1):171-9. PubMed ID: 19200559 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Liu Y; Wang W; Hu W; Lu Z; Zhou X; Li CM Biomed Microdevices; 2011 Aug; 13(4):769-77. PubMed ID: 21547537 [TBL] [Abstract][Full Text] [Related]
4. Poly(dimethyl siloxane)-based protein chip for simultaneous detection of multiple samples: use of glycidyl methacrylate photopolymer for site-specific protein immobilization. Park KH; Park HG; Kim JH; Seong KH Biosens Bioelectron; 2006 Dec; 22(5):613-20. PubMed ID: 16546371 [TBL] [Abstract][Full Text] [Related]
5. High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices. Yu L; Liu Y; Gan Y; Li CM Biosens Bioelectron; 2009 Jun; 24(10):2997-3002. PubMed ID: 19346122 [TBL] [Abstract][Full Text] [Related]
6. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
7. Surface modification on polyethylene terephthalate films with 2-methacryloyloxyethyl phosphorylcholine. Zheng Z; Ren L; Zhai Z; Wang Y; Hang F Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):3041-6. PubMed ID: 23623130 [TBL] [Abstract][Full Text] [Related]
8. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Kauffmann E; Ehrat M; Klok HA Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572 [TBL] [Abstract][Full Text] [Related]
9. Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein. Wang R; Zhang Y; Ma G; Su Z Colloids Surf B Biointerfaces; 2006 Aug; 51(1):93-9. PubMed ID: 16824738 [TBL] [Abstract][Full Text] [Related]
10. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture. Liang M; Yao J; Chen X; Huang L; Shao Z Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1409-16. PubMed ID: 23827589 [TBL] [Abstract][Full Text] [Related]
11. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Wu D; Zhao B; Dai Z; Qin J; Lin B Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600 [TBL] [Abstract][Full Text] [Related]
12. Protein microarrays on hybrid polymeric thin films prepared by self-assembly of polyelectrolytes for multiple-protein immunoassays. Zhou X; Zhou J Proteomics; 2006 Mar; 6(5):1415-26. PubMed ID: 16404721 [TBL] [Abstract][Full Text] [Related]
13. Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process. Thierry B; Jasieniak M; de Smet LC; Vasilev K; Griesser HJ Langmuir; 2008 Sep; 24(18):10187-95. PubMed ID: 18680384 [TBL] [Abstract][Full Text] [Related]
15. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Wang J; Huang N; Yang P; Leng YX; Sun H; Liu ZY; Chu PK Biomaterials; 2004 Jul; 25(16):3163-70. PubMed ID: 14980411 [TBL] [Abstract][Full Text] [Related]
16. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity. Lin Z; Ma Y; Zhao C; Chen R; Zhu X; Zhang L; Yan X; Yang W Lab Chip; 2014 Jul; 14(14):2505-14. PubMed ID: 24852169 [TBL] [Abstract][Full Text] [Related]
17. Immobilisation of oligo-peptidic probes for microarray implementation: characterisation by FTIR, atomic force microscopy and 2D fluorescence. Soultani-Vigneron S; Dugas V; Rouillat MH; Fédollière J; Duclos MC; Vnuk E; Phaner-Goutorbe M; Bulone V; Martin JR; Wallach J; Cloarec JP J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 822(1-2):304-10. PubMed ID: 15908289 [TBL] [Abstract][Full Text] [Related]
18. Grafting of dermatan sulfate on polyethylene terephtalate to enhance biointegration. Dhahri M; Abed A; Lajimi RH; Mansour MB; Gueguen V; Abdesselem SB; Chaubet F; Letourneur D; Meddahi-Pellé A; Maaroufi RM J Biomed Mater Res A; 2011 Jul; 98(1):114-21. PubMed ID: 21548062 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study. Donelli I; Taddei P; Smet PF; Poelman D; Nierstrasz VA; Freddi G Biotechnol Bioeng; 2009 Aug; 103(5):845-56. PubMed ID: 19365872 [TBL] [Abstract][Full Text] [Related]
20. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Westerhoff P; Prapaipong P; Shock E; Hillaireau A Water Res; 2008 Feb; 42(3):551-6. PubMed ID: 17707454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]