These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 19064172)

  • 1. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts.
    Moffat KL; Wang IN; Rodeo SA; Lu HH
    Clin Sports Med; 2009 Jan; 28(1):157-76. PubMed ID: 19064172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue engineering strategies for the regeneration of orthopedic interfaces.
    Lu HH; Subramony SD; Boushell MK; Zhang X
    Ann Biomed Eng; 2010 Jun; 38(6):2142-54. PubMed ID: 20422291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.
    Spalazzi JP; Doty SB; Moffat KL; Levine WN; Lu HH
    Tissue Eng; 2006 Dec; 12(12):3497-508. PubMed ID: 17518686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stratified scaffold design for engineering composite tissues.
    Mosher CZ; Spalazzi JP; Lu HH
    Methods; 2015 Aug; 84():99-102. PubMed ID: 25846397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():525-8. PubMed ID: 17946839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.
    Lu HH; Spalazzi JP
    Comb Chem High Throughput Screen; 2009 Jul; 12(6):589-97. PubMed ID: 19601756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic scaffold design for functional and integrative tendon repair.
    Zhang X; Bogdanowicz D; Erisken C; Lee NM; Lu HH
    J Shoulder Elbow Surg; 2012 Feb; 21(2):266-77. PubMed ID: 22244070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating soft and hard tissues via interface tissue engineering.
    Patel S; Caldwell JM; Doty SB; Levine WN; Rodeo S; Soslowsky LJ; Thomopoulos S; Lu HH
    J Orthop Res; 2018 Apr; 36(4):1069-1077. PubMed ID: 29149506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis.
    Chen Y; Li Y; Zhu W; Liu Q
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38697099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.
    Spalazzi JP; Vyner MC; Jacobs MT; Moffat KL; Lu HH
    Clin Orthop Relat Res; 2008 Aug; 466(8):1938-48. PubMed ID: 18512112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration.
    Baawad A; Jacho D; Hamil T; Yildirim-Ayan E; Kim DS
    Tissue Eng Part B Rev; 2023 Apr; 29(2):123-140. PubMed ID: 36181352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].
    Zhang W; He J; Li X; Liu Y; Bian W; Li D; Jin Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):314-7. PubMed ID: 24844011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction.
    Liu H; Yang L; Zhang E; Zhang R; Cai D; Zhu S; Ran J; Bunpetch V; Cai Y; Heng BC; Hu Y; Dai X; Chen X; Ouyang H
    Acta Biomater; 2017 Jul; 56():129-140. PubMed ID: 28502669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering complex orthopaedic tissues via strategic biomimicry.
    Qu D; Mosher CZ; Boushell MK; Lu HH
    Ann Biomed Eng; 2015 Mar; 43(3):697-717. PubMed ID: 25465616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model.
    Yokoya S; Mochizuki Y; Nagata Y; Deie M; Ochi M
    Am J Sports Med; 2008 Jul; 36(7):1298-309. PubMed ID: 18354143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-engineered tendon constructs for rotator cuff repair in sheep.
    Novakova SS; Mahalingam VD; Florida SE; Mendias CL; Allen A; Arruda EM; Bedi A; Larkin LM
    J Orthop Res; 2018 Jan; 36(1):289-299. PubMed ID: 28657154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.
    Font Tellado S; Balmayor ER; Van Griensven M
    Adv Drug Deliv Rev; 2015 Nov; 94():126-40. PubMed ID: 25777059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface tissue engineering: next phase in musculoskeletal tissue repair.
    Sahoo S; Teh TKh; He P; Toh SL; Goh JCh
    Ann Acad Med Singap; 2011 May; 40(5):245-51. PubMed ID: 21678016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff.
    Wang D; Zhang X; Huang S; Liu Y; Fu BS; Mak KK; Blocki AM; Yung PS; Tuan RS; Ker DFE
    Biomaterials; 2021 May; 272():120789. PubMed ID: 33845368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.