BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19064266)

  • 1. Probing cell structure by controlling the mechanical environment with cell-substrate interactions.
    Cheng CM; Steward RL; LeDuc PR
    J Biomech; 2009 Jan; 42(2):187-92. PubMed ID: 19064266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.
    Chou SY; Cheng CM; LeDuc PR
    Biomaterials; 2009 Jun; 30(18):3136-42. PubMed ID: 19299009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing cell structure responses through a shear and stretching mechanical stimulation technique.
    Steward RL; Cheng CM; Wang DL; LeDuc PR
    Cell Biochem Biophys; 2010 Apr; 56(2-3):115-24. PubMed ID: 20033625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness.
    Cheng CM; LeDuc PR; Lin YW
    J Biomech; 2011 Mar; 44(5):856-62. PubMed ID: 21208617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties.
    Féréol S; Fodil R; Labat B; Galiacy S; Laurent VM; Louis B; Isabey D; Planus E
    Cell Motil Cytoskeleton; 2006 Jun; 63(6):321-40. PubMed ID: 16634082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast.
    Mizutani T; Haga H; Kawabata K
    Cell Motil Cytoskeleton; 2004 Dec; 59(4):242-8. PubMed ID: 15493061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells.
    Masuda T; Takahashi I; Anada T; Arai F; Fukuda T; Takano-Yamamoto T; Suzuki O
    J Biotechnol; 2008 Jan; 133(2):231-8. PubMed ID: 17904677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells.
    Sato K; Adachi T; Matsuo M; Tomita Y
    J Biomech; 2005 Sep; 38(9):1895-901. PubMed ID: 16023478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical model of cytoskeleton structuration during cell adhesion and spreading.
    Maurin B; Cañadas P; Baudriller H; Montcourrier P; Bettache N
    J Biomech; 2008; 41(9):2036-41. PubMed ID: 18466907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-step cell patterning on planar and complex curved surfaces by precision spraying of polymers.
    De Silva MN; Paulsen J; Renn MJ; Odde DJ
    Biotechnol Bioeng; 2006 Apr; 93(5):919-27. PubMed ID: 16358279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells.
    Jaasma MJ; Jackson WM; Tang RY; Keaveny TM
    J Biomech; 2007; 40(9):1938-45. PubMed ID: 17097091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated lithographic membranes and surface adhesion chemistry for three-dimensional cellular stimulation.
    Kubicek JD; Brelsford S; Ahluwalia P; Leduc PR
    Langmuir; 2004 Dec; 20(26):11552-6. PubMed ID: 15595783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic microposts as an approach to apply forces to living cells.
    Sniadecki NJ; Anguelouch A; Yang MT; Lamb CM; Liu Z; Kirschner SB; Liu Y; Reich DH; Chen CS
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14553-8. PubMed ID: 17804810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
    Su J; Jiang X; Welsch R; Whitesides GM; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):87-104. PubMed ID: 17937113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for studying mechanical control of angiogenesis by the cytoskeleton and extracellular matrix.
    Mammoto A; Sero JE; Mammoto T; Ingber DE
    Methods Enzymol; 2008; 443():227-59. PubMed ID: 18772019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D finite element analysis of uniaxial cell stretching: from image to insight.
    Gladilin E; Micoulet A; Hosseini B; Rohr K; Spatz J; Eils R
    Phys Biol; 2007 Jun; 4(2):104-13. PubMed ID: 17664655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical influences on cells, tissues and organs - 'Mechanical Morphogenesis'.
    Benjamin M; Hillen B
    Eur J Morphol; 2003 Feb; 41(1):3-7. PubMed ID: 15121543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cellular morphology using temperature-responsive hydrogel for integrin-mediated mechanical force stimulation.
    Yamaki K; Harada I; Goto M; Cho CS; Akaike T
    Biomaterials; 2009 Mar; 30(7):1421-7. PubMed ID: 19100616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain.
    Ahmed WW; Wolfram T; Goldyn AM; Bruellhoff K; Rioja BA; Möller M; Spatz JP; Saif TA; Groll J; Kemkemer R
    Biomaterials; 2010 Jan; 31(2):250-8. PubMed ID: 19783042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.