BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19064308)

  • 1. Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media.
    Hofmann T; von der Kammer F
    Environ Pollut; 2009 Apr; 157(4):1117-26. PubMed ID: 19064308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonideal transport of reactive contaminants in heterogeneous porous media: 7. distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption.
    Zhang Z; Brusseau ML
    J Contam Hydrol; 2004 Oct; 74(1-4):83-103. PubMed ID: 15358488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of hydrophobic organic compounds onto organoclays.
    Lee SY; Kim SJ; Chung SY; Jeong CH
    Chemosphere; 2004 May; 55(5):781-5. PubMed ID: 15013684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of mineral micropores on transport and fate of organic contaminants: a review.
    Cheng H; Hu E; Hu Y
    J Contam Hydrol; 2012 Mar; 129-130():80-90. PubMed ID: 22055156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
    Johari WL; Diamessis PJ; Lion LW
    Water Res; 2010 Feb; 44(4):1028-37. PubMed ID: 19406449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative sorption of benzo[alpha]phrene to different humic acids and humin in sediments.
    Zhang J; He M; Shi Y
    J Hazard Mater; 2009 Jul; 166(2-3):802-9. PubMed ID: 19135301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation during contaminant transport in porous media: 6. Impact of sorption on coupled degradation-transport behavior.
    Famisan GB; Brusseau ML
    Environ Toxicol Chem; 2003 Mar; 22(3):510-7. PubMed ID: 12627636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling colloid-facilitated transport of multi-species contaminants in unsaturated porous media.
    Massoudieh A; Ginn TR
    J Contam Hydrol; 2007 Jul; 92(3-4):162-83. PubMed ID: 17293000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of thermal programmed desorption mass spectrometry methods for environmental applications.
    Nicholl SI; Talley JW
    Chemosphere; 2006 Mar; 63(1):132-41. PubMed ID: 16226295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.
    Zhang M; Engelhardt I; Šimůnek J; Bradford SA; Kasel D; Berns AE; Vereecken H; Klumpp E
    Environ Pollut; 2017 Feb; 221():470-479. PubMed ID: 28012669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of chlorinated hydrocarbon sorption properties in a sandy aquifer.
    Zhao X; Wallace RB; Hyndman DW; Dybas MJ; Voice TC
    J Contam Hydrol; 2005 Aug; 78(4):327-42. PubMed ID: 16040155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of local-scale physical heterogeneity and nonlinear, rate-limited sorption/desorption on contaminant transport in porous media.
    Johnson GR; Gupta K; Putz DK; Hu Q; Brusseau ML
    J Contam Hydrol; 2003 Jun; 64(1-2):35-58. PubMed ID: 12744828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns.
    Bi E; Zhang L; Schmidt TC; Haderlein SB
    J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of nanoparticle dispersions for in-vitro toxicity testing.
    Vippola M; Falck GC; Lindberg HK; Suhonen S; Vanhala E; Norppa H; Savolainen K; Tossavainen A; Tuomi T
    Hum Exp Toxicol; 2009 Jun; 28(6-7):377-85. PubMed ID: 19755449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments.
    Koelmans AA; Nowack B; Wiesner MR
    Environ Pollut; 2009 Apr; 157(4):1110-6. PubMed ID: 18954924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid experimental protocol to determine the desorption resistant fraction of sediment-sorbed hydrophobic organic contaminants.
    Zhang P; Huang S; Kan AT; Tomson MB
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1449-1460. PubMed ID: 31748989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of key factors controlling engineered nanoparticle transport in porous media.
    Wang M; Gao B; Tang D
    J Hazard Mater; 2016 Nov; 318():233-246. PubMed ID: 27427890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.
    Fatisson J; Quevedo IR; Wilkinson KJ; Tufenkji N
    Colloids Surf B Biointerfaces; 2012 Mar; 91():198-204. PubMed ID: 22119565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.