These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19065008)

  • 1. Mechanical degradation of drag reducing polymers in suspensions of blood cells and rigid particles.
    Marhefka JN; Velankar SS; Chapman TM; Kameneva MV
    Biorheology; 2008; 45(5):599-609. PubMed ID: 19065008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood soluble drag-reducing polymers prevent lethality from hemorrhagic shock in acute animal experiments.
    Kameneva MV; Wu ZJ; Uraysh A; Repko B; Litwak KN; Billiar TR; Fink MP; Simmons RL; Griffith BP; Borovetz HS
    Biorheology; 2004; 41(1):53-64. PubMed ID: 14967890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of the polymer-induced drag reduction in blood.
    Pribush A; Hatzkelzon L; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2013 Mar; 103():354-9. PubMed ID: 23261555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(N-vinylformamide)-A drag-reducing polymer for biomedical applications.
    Marhefka JN; Marascalco PJ; Chapman TM; Russell AJ; Kameneva MV
    Biomacromolecules; 2006 May; 7(5):1597-603. PubMed ID: 16677044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation.
    Chambers E; Mitragotri S
    Exp Biol Med (Maywood); 2007 Jul; 232(7):958-66. PubMed ID: 17609513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes.
    Ulker P; Sati L; Celik-Ozenci C; Meiselman HJ; Baskurt OK
    Biorheology; 2009; 46(2):121-32. PubMed ID: 19458415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-Induced Anisotropy in Mixtures of Associative Polymers and Latex Particles.
    Belzung B; Lequeux F; Vermant J; Mewis J
    J Colloid Interface Sci; 2000 Apr; 224(1):179-187. PubMed ID: 10708508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interaction between erythrocytes and leukocytes affects rheology of blood in microvessels.
    Pappu V; Bagchi P
    Biorheology; 2007; 44(3):191-215. PubMed ID: 17851167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood cell structure-function studies: light transmission and attenuation coefficients of suspensions of blood cells and model particles at rest and with stirring.
    Frojmovic MM; Panjwani R
    J Lab Clin Med; 1975 Aug; 86(2):326-43. PubMed ID: 1151155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow.
    Zhao R; Marhefka JN; Antaki JF; Kameneva MV
    Biorheology; 2010; 47(3-4):193-203. PubMed ID: 21084744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drag reducing polymers improve tissue perfusion via modification of the RBC traffic in microvessels.
    Marhefka JN; Zhao R; Wu ZJ; Velankar SS; Antaki JF; Kameneva MV
    Biorheology; 2009; 46(4):281-92. PubMed ID: 19721190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric flows of spherical particles in a cylindrical tube.
    Sugihara-Seki M; Skalak R
    Biorheology; 1997; 34(3):155-69. PubMed ID: 9474261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique.
    Jovtchev S; Stoeff S; Arnold K; Zschörnig O
    Clin Hemorheol Microcirc; 2008; 39(1-4):229-33. PubMed ID: 18503130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent.
    Hadinoto K
    Int J Pharm; 2009 Jun; 374(1-2):153-61. PubMed ID: 19446772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Of hemorrhagic shock, spherical cows and Aloe vera.
    Gutierrez G; Fuller SP
    Crit Care; 2004 Dec; 8(6):406-7. PubMed ID: 15566601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.