These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 19065033)
1. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion. Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033 [No Abstract] [Full Text] [Related]
2. Control of oxygen tension and pH in a bioreactor for cartilage tissue engineering. Das R; Kreukniet M; Oostra J; van Osch G; Weinans H; Jahr H Biomed Mater Eng; 2008; 18(4-5):279-82. PubMed ID: 19065034 [No Abstract] [Full Text] [Related]
3. Scaffold-free cartilage by rotational culture for tissue engineering. Furukawa KS; Imura K; Tateishi T; Ushida T J Biotechnol; 2008 Jan; 133(1):134-45. PubMed ID: 17913274 [TBL] [Abstract][Full Text] [Related]
4. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor. Bueno EM; Bilgen B; Carrier RL; Barabino GA Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164 [TBL] [Abstract][Full Text] [Related]
5. [Research progress of bioreactor biophysical factors in cartilage tissue engineering]. Ye G; Zhang F; Shi H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):810-3. PubMed ID: 24063168 [TBL] [Abstract][Full Text] [Related]
6. Low-density cultures of bovine chondrocytes: effects of scaffold material and culture system. Hu JC; Athanasiou KA Biomaterials; 2005 May; 26(14):2001-12. PubMed ID: 15576174 [TBL] [Abstract][Full Text] [Related]
7. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048 [TBL] [Abstract][Full Text] [Related]
8. Bioreactors for tissue engineering of cartilage. Concaro S; Gustavson F; Gatenholm P Adv Biochem Eng Biotechnol; 2009; 112():125-43. PubMed ID: 19290500 [TBL] [Abstract][Full Text] [Related]
9. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering. Laganà K; Moretti M; Dubini G; Raimondi MT Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689 [TBL] [Abstract][Full Text] [Related]
10. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells. Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373 [TBL] [Abstract][Full Text] [Related]
11. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage. Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408 [TBL] [Abstract][Full Text] [Related]
12. Technical strategies to improve tissue engineering of cartilage-carrier-constructs. Pörtner R; Goepfert C; Wiegandt K; Janssen R; Ilinich E; Paetzold H; Eisenbarth E; Morlock M Adv Biochem Eng Biotechnol; 2009; 112():145-81. PubMed ID: 19290501 [TBL] [Abstract][Full Text] [Related]
13. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715 [TBL] [Abstract][Full Text] [Related]
14. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Bilgen B; Sucosky P; Neitzel GP; Barabino GA Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866 [TBL] [Abstract][Full Text] [Related]
15. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708 [TBL] [Abstract][Full Text] [Related]
16. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Birla RK; Dhawan V; Dow DE; Huang YC; Brown DL Biotechnol Lett; 2009 Feb; 31(2):191-201. PubMed ID: 18854950 [TBL] [Abstract][Full Text] [Related]
17. Mechanobiology, chondrocyte and cartilage. Huselstein C; Netter P; de Isla N; Wang Y; Gillet P; Decot V; Muller S; Bensoussan D; Stoltz JF Biomed Mater Eng; 2008; 18(4-5):213-20. PubMed ID: 19065024 [No Abstract] [Full Text] [Related]
18. In vitro physical stimulation of tissue-engineered and native cartilage. Li KW; Klein TJ; Chawla K; Nugent GE; Bae WC; Sah RL Methods Mol Med; 2004; 100():325-52. PubMed ID: 15280604 [TBL] [Abstract][Full Text] [Related]
19. Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain. Lee DA; Knight MM Methods Mol Med; 2004; 100():307-24. PubMed ID: 15280603 [TBL] [Abstract][Full Text] [Related]
20. The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro. Hsu SH; Kuo CC; Whu SW; Lin CH; Tsai CL Biomol Eng; 2006 Oct; 23(5):259-64. PubMed ID: 16890016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]