These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 19065258)
1. Patterns in age-seroprevalence consistent with acquired immunity against Trypanosoma brucei in Serengeti lions. Welburn S; Picozzi K; Coleman PG; Packer C PLoS Negl Trop Dis; 2008; 2(12):e347. PubMed ID: 19065258 [TBL] [Abstract][Full Text] [Related]
2. Study on the sequential tsetse-transmitted Trypanosoma congolense, T. brucei brucei and T. vivax infections to African buffalo, eland, waterbuck, N'Dama and Boran cattle. Moloo SK; Orinda GO; Sabwa CL; Minja SH; Masake RA Vet Parasitol; 1999 Jan; 80(3):197-213. PubMed ID: 9950344 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution and trypanosome infection of tsetse flies in the sleeping sickness focus of Zimbabwe in Hurungwe District. Shereni W; Anderson NE; Nyakupinda L; Cecchi G Parasit Vectors; 2016 Nov; 9(1):605. PubMed ID: 27884172 [TBL] [Abstract][Full Text] [Related]
5. Detection and identification of pathogenic trypanosome species in tsetse flies along the Comoé River in Côte d'Ivoire. Djohan V; Kaba D; Rayaissé JB; Dayo GK; Coulibaly B; Salou E; Dofini F; Kouadio Ade M; Menan H; Solano P Parasite; 2015; 22():18. PubMed ID: 26035296 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the impact of targeting livestock for the prevention of human and animal trypanosomiasis, at village level, in districts newly affected with T. b. rhodesiense in Uganda. Hamill L; Picozzi K; Fyfe J; von Wissmann B; Wastling S; Wardrop N; Selby R; Acup CA; Bardosh KL; Muhanguzi D; Kabasa JD; Waiswa C; Welburn SC Infect Dis Poverty; 2017 Feb; 6(1):16. PubMed ID: 28162093 [TBL] [Abstract][Full Text] [Related]
7. The use of molecular technology to investigate trypanosome infections in tsetse flies at Liwonde Wild Life Reserve. Nayupe SF; Simwela NV; Kamanga PM; Chisi JE; Senga E; Musaya J; Maganga E Malawi Med J; 2019 Dec; 31(4):233-237. PubMed ID: 32133052 [TBL] [Abstract][Full Text] [Related]
8. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Simwango M; Ngonyoka A; Nnko HJ; Salekwa LP; Ole-Neselle M; Kimera SI; Gwakisa PS Parasit Vectors; 2017 Oct; 10(1):507. PubMed ID: 29061160 [TBL] [Abstract][Full Text] [Related]
9. Molecular identification of different trypanosome species and subspecies in tsetse flies of northern Nigeria. Isaac C; Ciosi M; Hamilton A; Scullion KM; Dede P; Igbinosa IB; Nmorsi OP; Masiga D; Turner CM Parasit Vectors; 2016 May; 9(1):301. PubMed ID: 27216812 [TBL] [Abstract][Full Text] [Related]
11. Trypanosoma brucei s.l.: Microsatellite markers revealed high level of multiple genotypes in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus of Cameroon. Simo G; Njitchouang GR; Njiokou F; Cuny G; Asonganyi T Exp Parasitol; 2011 Jul; 128(3):272-8. PubMed ID: 21376044 [TBL] [Abstract][Full Text] [Related]
12. Interference in the establishment of tsetse-transmitted Trypanosoma congolense, T. brucei or T. vivax superinfections in goats already infected with T. congolense or T. vivax. Dwinger RH; Murray M; Luckins AG; Rae PF; Moloo SK Vet Parasitol; 1989 Jan; 30(3):177-89. PubMed ID: 2705284 [TBL] [Abstract][Full Text] [Related]
13. Recirculation of Trypanosoma brucei brucei in cattle after T. congolense challenge by tsetse flies. Van den Bossche P; De Deken R; Brandt J; Seibou B; Geerts S Vet Parasitol; 2004 May; 121(1-2):79-85. PubMed ID: 15110405 [TBL] [Abstract][Full Text] [Related]
14. Trypanosoma brucei: infectivity and immunogenicity of cultured parasites. Nyindo M; Wellde BT Exp Parasitol; 1985 Oct; 60(2):150-4. PubMed ID: 4029345 [TBL] [Abstract][Full Text] [Related]
15. Isolation of Trypanosoma brucei from the monitor lizard (Varanus niloticus) in an endemic focus of Rhodesian sleeping sickness in Kenya. Njagu Z; Mihok S; Kokwaro E; Verloo D Acta Trop; 1999 Mar; 72(2):137-48. PubMed ID: 10206114 [TBL] [Abstract][Full Text] [Related]
16. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. Weiss BL; Maltz MA; Vigneron A; Wu Y; Walter KS; O'Neill MB; Wang J; Aksoy S PLoS Pathog; 2019 Feb; 15(2):e1007470. PubMed ID: 30817773 [TBL] [Abstract][Full Text] [Related]
17. The significance of human serum sensitivity in the context of T.B. rhodesiense sleeping sickness epidemiology and control. Rickman LR East Afr Med J; 1992 May; 69(5):272-8. PubMed ID: 1644047 [TBL] [Abstract][Full Text] [Related]
18. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Hovel-Miner G; Mugnier M; Papavasiliou FN; Pinger J; Schulz D Results Probl Cell Differ; 2015; 57():23-46. PubMed ID: 26537376 [TBL] [Abstract][Full Text] [Related]
19. Cyclical transmission of Trypanosoma brucei rhodesiense and Trypanosoma congolense by tsetse flies infected with culture-form procyclic trypanosomes. Evans DA J Protozool; 1979 Aug; 26(3):425-7. PubMed ID: 536930 [TBL] [Abstract][Full Text] [Related]
20. Glossina dynamics in and around the sleeping sickness endemic Serengeti ecosystem of northwestern Tanzania. Malele II; Kinung'hi SM; Nyingilili HS; Matemba LE; Sahani JK; Mlengeya TD; Wambura M; Kibona SN J Vector Ecol; 2007 Dec; 32(2):263-8. PubMed ID: 18260516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]