These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19065522)

  • 1. [Study on the single-nucleotide substitution (c.-16C to T) of the PURATROPHIN-1 gene in Chinese patients with spinocerebellar ataxia].
    Zhou Y; Song X; Yi J; Jiang H; Wang J; Liao S; Tang B
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Dec; 25(6):646-8. PubMed ID: 19065522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains.
    Ishikawa K; Toru S; Tsunemi T; Li M; Kobayashi K; Yokota T; Amino T; Owada K; Fujigasaki H; Sakamoto M; Tomimitsu H; Takashima M; Kumagai J; Noguchi Y; Kawashima Y; Ohkoshi N; Ishida G; Gomyoda M; Yoshida M; Hashizume Y; Saito Y; Murayama S; Yamanouchi H; Mizutani T; Kondo I; Toda T; Mizusawa H
    Am J Hum Genet; 2005 Aug; 77(2):280-96. PubMed ID: 16001362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population.
    Nozaki H; Ikeuchi T; Kawakami A; Kimura A; Koide R; Tsuchiya M; Nakmura Y; Mutoh T; Yamamoto H; Nakao N; Sahashi K; Nishizawa M; Onodera O
    Mov Disord; 2007 Apr; 22(6):857-62. PubMed ID: 17357132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A -16C>T substitution in the 5' UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano.
    Ohata T; Yoshida K; Sakai H; Hamanoue H; Mizuguchi T; Shimizu Y; Okano T; Takada F; Ishikawa K; Mizusawa H; Yoshiura KI; Fukushima Y; Ikeda SI; Matsumoto N
    J Hum Genet; 2006; 51(5):461-466. PubMed ID: 16614795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.
    Tang B; Liu C; Shen L; Dai H; Pan Q; Jing L; Ouyang S; Xia J
    Arch Neurol; 2000 Apr; 57(4):540-4. PubMed ID: 10768629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia.
    Amino T; Ishikawa K; Toru S; Ishiguro T; Sato N; Tsunemi T; Murata M; Kobayashi K; Inazawa J; Toda T; Mizusawa H
    J Hum Genet; 2007; 52(8):643-649. PubMed ID: 17611710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.
    Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F
    Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families.
    Basri R; Yabe I; Soma H; Sasaki H
    J Hum Genet; 2007; 52(10):848-855. PubMed ID: 17805477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinocerebellar ataxias in mainland China: an updated genetic analysis among a large cohort of familial and sporadic cases.
    Wang J; Shen L; Lei L; Xu Q; Zhou J; Liu Y; Guan W; Pan Q; Xia K; Tang B; Jiang H
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2011 Jun; 36(6):482-9. PubMed ID: 21743138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinocerebellar ataxia type 1 in China: molecular analysis and genotype-phenotype correlation in 5 families.
    Zhou YX; Qiao WH; Gu WH; Xie H; Tang BS; Zhou LS; Yang BX; Takiyama Y; Tsuji S; He HY; Deng CX; Goldfarb LG; Wang GX
    Arch Neurol; 2001 May; 58(5):789-94. PubMed ID: 11346374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Studies on the CAG repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese Han].
    Wang J; Xu Q; Lei L; Shen L; Jiang H; Li X; Zhou Y; Yi J; Zhou J; Yan X; Pan Q; Xia K; Tang B
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2009 Dec; 26(6):620-5. PubMed ID: 19953482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of the puratrophin-1 (PLEKHG4) gene on chromosome 16q22.1 are not a common genetic cause of cerebellar ataxia in a European population.
    Wieczorek S; Arning L; Alheite I; Epplen JT
    J Hum Genet; 2006; 51(4):363-367. PubMed ID: 16491300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17.
    Oda M; Maruyama H; Komure O; Morino H; Terasawa H; Izumi Y; Imamura T; Yasuda M; Ichikawa K; Ogawa M; Matsumoto M; Kawakami H
    Arch Neurol; 2004 Feb; 61(2):209-12. PubMed ID: 14967767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular genetic approach to spinocerebellar ataxias].
    Ishikawa K; Ishiguro T; Takahashi M; Sato N; Amino T; Niimi Y; Mizusawa H
    Rinsho Shinkeigaku; 2009 Nov; 49(11):907-9. PubMed ID: 20030245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The (-16C > T) substitution in the PLEKHG4 gene is not present among European ADCA patients.
    Cagnoli C; Brussino A; Di Gregorio E; Brusco A; Stevanin G; Durr A; Brice A
    Mov Disord; 2007 Apr; 22(5):752-3. PubMed ID: 17290458
    [No Abstract]   [Full Text] [Related]  

  • 16. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan.
    Sakai H; Yoshida K; Shimizu Y; Morita H; Ikeda S; Matsumoto N
    Neurogenetics; 2010 Oct; 11(4):409-15. PubMed ID: 20424877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan.
    Hirano R; Takashima H; Okubo R; Okamoto Y; Maki Y; Ishida S; Suehara M; Hokezu Y; Arimura K
    J Hum Genet; 2009 Jul; 54(7):377-81. PubMed ID: 19444286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan.
    Tsai HF; Liu CS; Leu TM; Wen FC; Lin SJ; Liu CC; Yang DK; Li C; Hsieh M
    Acta Neurol Scand; 2004 May; 109(5):355-60. PubMed ID: 15080863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Polynucleotide repeat expansion of nine spinocerebellar ataxia subtypes and dentatorubral-pallidoluysian atrophy in healthy Chinese Han population].
    Wang JL; Wu YQ; Lei LF; Shen L; Jiang H; Zhou YF; Yi JP; Zhou J; Yan XX; Pan Q; Xia K; Tang BS
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2010 Oct; 27(5):501-5. PubMed ID: 20931525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinocerebellar ataxia type 4 and 16q22.1-linked Japanese ataxia are not allelic.
    Hellenbroich Y; Bernard V; Zühlke C
    J Neurol; 2008 Apr; 255(4):612-3. PubMed ID: 18293026
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.