These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1906561)

  • 1. Kinetic analysis of amyloid fibril polymerization in vitro.
    Naiki H; Higuchi K; Nakakuki K; Takeda T
    Lab Invest; 1991 Jul; 65(1):104-10. PubMed ID: 1906561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-order kinetic model of Alzheimer's beta-amyloid fibril extension in vitro.
    Naiki H; Nakakuki K
    Lab Invest; 1996 Feb; 74(2):374-83. PubMed ID: 8780157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: use of the fluorescent indicator, thioflavine T.
    Naiki H; Higuchi K; Matsushima K; Shimada A; Chen WH; Hosokawa M; Takeda T
    Lab Invest; 1990 Jun; 62(6):768-73. PubMed ID: 2359260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer's beta-amyloid fibril formation in vitro.
    Naiki H; Gejyo F; Nakakuki K
    Biochemistry; 1997 May; 36(20):6243-50. PubMed ID: 9166797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of murine senile amyloidosis.
    Naiki H; Higuchi K; Shimada A; Takeda T; Nakakuki K
    Lab Invest; 1993 Mar; 68(3):332-7. PubMed ID: 8095565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining.
    Binger KJ; Pham CL; Wilson LM; Bailey MF; Lawrence LJ; Schuck P; Howlett GJ
    J Mol Biol; 2008 Feb; 376(4):1116-29. PubMed ID: 18206908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysophospholipids induce the nucleation and extension of beta2-microglobulin-related amyloid fibrils at a neutral pH.
    Ookoshi T; Hasegawa K; Ohhashi Y; Kimura H; Takahashi N; Yoshida H; Miyazaki R; Goto Y; Naiki H
    Nephrol Dial Transplant; 2008 Oct; 23(10):3247-55. PubMed ID: 18467373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of beta-amyloid fibril elongation.
    Cannon MJ; Williams AD; Wetzel R; Myszka DG
    Anal Biochem; 2004 May; 328(1):67-75. PubMed ID: 15081909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrilization in mouse senile amyloidosis is fibril conformation-dependent.
    Higuchi K; Kogishi K; Wang J; Chen X; Chiba T; Matsushita T; Hoshii Y; Kawano H; Ishihara T; Yokota T; Hosokawa M
    Lab Invest; 1998 Dec; 78(12):1535-42. PubMed ID: 9881953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of AApoAII amyloidosis by various heterogeneous amyloid fibrils.
    Fu X; Korenaga T; Fu L; Xing Y; Guo Z; Matsushita T; Hosokawa M; Naiki H; Baba S; Kawata Y; Ikeda S; Ishihara T; Mori M; Higuchi K
    FEBS Lett; 2004 Apr; 563(1-3):179-84. PubMed ID: 15063745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transthyretin forms amyloid fibrils at physiological pH with ultrasonication.
    Misumi Y; Ueda M; Fujimori H; Shinriki S; Meng W; Kim J; Saito S; Obayashi K; Uchino M; Ando Y
    Amyloid; 2008 Dec; 15(4):234-9. PubMed ID: 19065294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice.
    Sawashita J; Zhang B; Hasegawa K; Mori M; Naiki H; Kametani F; Higuchi K
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):E836-45. PubMed ID: 25675489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro characterization of lactoferrin aggregation and amyloid formation.
    Nilsson MR; Dobson CM
    Biochemistry; 2003 Jan; 42(2):375-82. PubMed ID: 12525164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features.
    Baskakov IV; Bocharova OV
    Biochemistry; 2005 Feb; 44(7):2339-48. PubMed ID: 15709746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization.
    Hurshman AR; White JT; Powers ET; Kelly JW
    Biochemistry; 2004 Jun; 43(23):7365-81. PubMed ID: 15182180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants.
    Morozova-Roche LA; Zurdo J; Spencer A; Noppe W; Receveur V; Archer DB; Joniau M; Dobson CM
    J Struct Biol; 2000 Jun; 130(2-3):339-51. PubMed ID: 10940237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.