These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19065857)

  • 1. Visual prosthesis.
    Schiller PH; Tehovnik EJ
    Perception; 2008; 37(10):1529-59. PubMed ID: 19065857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution to the theory of prosthetic vision.
    Hallum LE; Suaning GJ; Lovell NH
    ASAIO J; 2004; 50(4):392-6. PubMed ID: 15307555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated.
    Schiller PH; Slocum WM; Kwak MC; Kendall GL; Tehovnik EJ
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17809-14. PubMed ID: 21987821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
    Lewis PM; Ackland HM; Lowery AJ; Rosenfeld JV
    Brain Res; 2015 Jan; 1595():51-73. PubMed ID: 25446438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural interface for a cortical vision prosthesis.
    Normann RA; Maynard EM; Rousche PJ; Warren DJ
    Vision Res; 1999 Jul; 39(15):2577-87. PubMed ID: 10396626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation.
    Brelén ME; Duret F; Gérard B; Delbeke J; Veraart C
    J Neural Eng; 2005 Mar; 2(1):S22-8. PubMed ID: 15876651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural stimulation for visual rehabilitation: advances and challenges.
    Lorach H; Marre O; Sahel JA; Benosman R; Picaud S
    J Physiol Paris; 2013 Nov; 107(5):421-31. PubMed ID: 23148976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting visual sensitivity in retinal prosthesis patients.
    Horsager A; Greenwald SH; Weiland JD; Humayun MS; Greenberg RJ; McMahon MJ; Boynton GM; Fine I
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1483-91. PubMed ID: 19098313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the bionic eye--the retina implant: surgical, opthalmological and histopathological perspectives.
    Alteheld N; Roessler G; Walter P
    Acta Neurochir Suppl; 2007; 97(Pt 2):487-93. PubMed ID: 17691339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye movements as a marker for visual prosthesis spatial mapping - A feasibility study using a blind patient implanted with the Argus II retinal prosthesis.
    Caspi A; Dorn J; Helder JB; Katyal KD; Roy A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5443-5446. PubMed ID: 28269489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis.
    Dobelle WH; Mladejovsky MG; Girvin JP
    Science; 1974 Feb; 183(4123):440-4. PubMed ID: 4808973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of extraocular stimulation for a retinal prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    Can J Ophthalmol; 2005 Oct; 40(5):563-72. PubMed ID: 16391619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting signals into the brain: visual prosthetics through thalamic microstimulation.
    Pezaris JS; Eskandar EN
    Neurosurg Focus; 2009 Jul; 27(1):E6. PubMed ID: 19569894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.