BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 19065997)

  • 1. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture.
    Jayaraman T; Paget A; Shin YS; Li X; Mayer J; Chaudhry H; Niimi Y; Silane M; Berenstein A
    Vasc Health Risk Manag; 2008; 4(4):805-17. PubMed ID: 19065997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo.
    Hasan DM; Starke RM; Gu H; Wilson K; Chu Y; Chalouhi N; Heistad DD; Faraci FM; Sigmund CD
    Hypertension; 2015 Jul; 66(1):211-20. PubMed ID: 25916724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology.
    Ali MS; Starke RM; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Owens GK; Koch WJ; Greig NH; Dumont AS
    J Cereb Blood Flow Metab; 2013 Oct; 33(10):1564-73. PubMed ID: 23860374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation.
    Aoki T; Fukuda M; Nishimura M; Nozaki K; Narumiya S
    Acta Neuropathol Commun; 2014 Mar; 2():34. PubMed ID: 24685329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammation and cerebral aneurysms.
    Hosaka K; Hoh BL
    Transl Stroke Res; 2014 Apr; 5(2):190-8. PubMed ID: 24323732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of inflammatory mediators in intracranial aneurysms: A review.
    Chen C; Tang F; Zhu M; Wang C; Zhou H; Zhang C; Feng Y
    Clin Neurol Neurosurg; 2024 Jul; 242():108329. PubMed ID: 38781806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased serum levels of high-mobility group box 1 protein and the location characteristics in the patients of intracranial aneurysms.
    Lyu Y; Tu H; Luo J; Wang C; Li A; Zhou Y; Zhao J; Wang H; Hu J
    Brain Res; 2024 Apr; 1828():148759. PubMed ID: 38242523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms.
    Jayaraman T; Berenstein V; Li X; Mayer J; Silane M; Shin YS; Niimi Y; Kiliç T; Gunel M; Berenstein A
    Neurosurgery; 2005 Sep; 57(3):558-64; discussion 558-64. PubMed ID: 16145536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biology of intracranial aneurysms: role of inflammation.
    Chalouhi N; Ali MS; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Koch WJ; Dumont AS
    J Cereb Blood Flow Metab; 2012 Sep; 32(9):1659-76. PubMed ID: 22781330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of inflammation in the natural history of intracranial saccular aneurysms.
    Wang J; Wei L; Lu H; Zhu Y
    J Neurol Sci; 2021 May; 424():117294. PubMed ID: 33799211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonsteroidal Anti-Inflammatory Drugs: A Potential Pharmacological Treatment for Intracranial Aneurysm.
    Fisher CL; Demel SL
    Cerebrovasc Dis Extra; 2019; 9(1):31-45. PubMed ID: 31039577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammatory changes in the aneurysm wall: a review.
    Tulamo R; Frösen J; Hernesniemi J; Niemelä M
    J Neurointerv Surg; 2018 Jul; 10(Suppl 1):i58-i67. PubMed ID: 30037960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture.
    Starke RM; Raper DM; Ding D; Chalouhi N; Owens GK; Hasan DM; Medel R; Dumont AS
    Transl Stroke Res; 2014 Apr; 5(2):269-77. PubMed ID: 24323710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SDF-1α/CXCR4 Pathway Mediates Hemodynamics-Induced Formation of Intracranial Aneurysm by Modulating the Phenotypic Transformation of Vascular Smooth Muscle Cells.
    Yan Y; Xiong J; Xu F; Wang C; Zeng Z; Tang H; Lu Z; Huang Q
    Transl Stroke Res; 2022 Apr; 13(2):276-286. PubMed ID: 34173205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture.
    Starke RM; Chalouhi N; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Wada K; Shimada K; Hasan DM; Greig NH; Owens GK; Dumont AS
    J Neuroinflammation; 2014 Apr; 11():77. PubMed ID: 24739142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms.
    Korkmaz E; Kleinloog R; Verweij BH; Allijn IE; Hekking LHP; Regli L; Rinkel GJE; Ruigrok YM; Andries Post J
    J Neuropathol Exp Neurol; 2017 Oct; 76(10):908-916. PubMed ID: 28922850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic factors involves in intracranial aneurysms--actualities.
    Mohan D; Munteanu V; Coman T; Ciurea AV
    J Med Life; 2015; 8(3):336-41. PubMed ID: 26351537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mast Cell Promotes the Development of Intracranial Aneurysm Rupture.
    Furukawa H; Wada K; Tada Y; Kuwabara A; Sato H; Ai J; Lawton MT; Hashimoto T
    Stroke; 2020 Nov; 51(11):3332-3339. PubMed ID: 33019897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.