BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19066026)

  • 1. Use of bimolecular fluorescence complementation in yeast Saccharomyces cerevisiae.
    Skarp KP; Zhao X; Weber M; Jantti J
    Methods Mol Biol; 2008; 457():165-75. PubMed ID: 19066026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells.
    Weber-Boyvat M; Li S; Skarp KP; Olkkonen VM; Yan D; Jäntti J
    Methods Mol Biol; 2015; 1270():277-88. PubMed ID: 25702124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae.
    Sung MK; Huh WK
    Yeast; 2007 Sep; 24(9):767-75. PubMed ID: 17534848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of interactions between and among components of the meiotic silencing by unpaired DNA machinery in Neurospora crassa using bimolecular fluorescence complementation.
    Bardiya N; Alexander WG; Perdue TD; Barry EG; Metzenberg RL; Pukkila PJ; Shiu PK
    Genetics; 2008 Jan; 178(1):593-6. PubMed ID: 18202398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay.
    Sung MK; Huh WK
    J Microbiol Methods; 2010 Nov; 83(2):194-201. PubMed ID: 20828586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel screening system for protein-protein interactions by bimolecular fluorescence complementation in Saccharomyces cerevisiae.
    Kojima T; Karasawa S; Miyawaki A; Tsumuraya T; Fujii I
    J Biosci Bioeng; 2011 Apr; 111(4):397-401. PubMed ID: 21285004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of protein interactions during virus infection by bimolecular fluorescence complementation.
    Becker S; von Einem J
    Methods Mol Biol; 2013; 1064():29-41. PubMed ID: 23996248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimolecular Fluorescence Complementation to Visualize Protein-Protein Interactions in Human Cells Based on Gateway Cloning Technology.
    Lepur A; Vugrek O
    Methods Mol Biol; 2018; 1794():259-267. PubMed ID: 29855963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast.
    Barnard E; McFerran NV; Trudgett A; Nelson J; Timson DJ
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):479-82. PubMed ID: 18481985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae.
    Cole KC; McLaughlin HW; Johnson DI
    Eukaryot Cell; 2007 Mar; 6(3):378-87. PubMed ID: 17220465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae.
    Lee S; Lim WA; Thorn KS
    PLoS One; 2013; 8(7):e67902. PubMed ID: 23844123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimolecular Fluorescence Complementation with Improved Gateway-Compatible Vectors to Visualize Protein-Protein Interactions in Plant Cells.
    Goto-Yamada S; Hikino K; Nishimura M; Nakagawa T; Mano S
    Methods Mol Biol; 2018; 1794():245-258. PubMed ID: 29855962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ypt1 and TRAPP interactions: optimization of multicolor bimolecular fluorescence complementation in yeast.
    Lipatova Z; Kim JJ; Segev N
    Methods Mol Biol; 2015; 1298():107-16. PubMed ID: 25800836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes.
    Sjöhamn J; Båth P; Neutze R; Hedfalk K
    Protein Sci; 2016 Dec; 25(12):2196-2208. PubMed ID: 27643892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombination-mediated PCR-directed plasmid construction in vivo in yeast.
    Oldenburg KR; Vo KT; Michaelis S; Paddon C
    Nucleic Acids Res; 1997 Jan; 25(2):451-2. PubMed ID: 9016579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis.
    Hu CD; Grinberg AV; Kerppola TK
    Curr Protoc Cell Biol; 2006 Jan; Chapter 21():Unit 21.3. PubMed ID: 18228482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimolecular Fluorescence Complementation analysis to reveal protein interactions in herpes virus infected cells.
    Hernandez FP; Sandri-Goldin RM
    Methods; 2011 Oct; 55(2):182-7. PubMed ID: 21820055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel pair of split venus fragments to detect protein-protein interactions by in vitro and in vivo bimolecular fluorescence complementation assays.
    Ohashi K; Mizuno K
    Methods Mol Biol; 2014; 1174():247-62. PubMed ID: 24947387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence imaging of mitochondria in yeast.
    Swayne TC; Gay AC; Pon LA
    Methods Mol Biol; 2007; 372():433-59. PubMed ID: 18314744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.