These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19066226)

  • 81. Cyclophilin 40 is required for microRNA activity in Arabidopsis.
    Smith MR; Willmann MR; Wu G; Berardini TZ; Möller B; Weijers D; Poethig RS
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5424-9. PubMed ID: 19289849
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Indian Himalayan natural Arabidopsis thaliana accessions with abolished miR158 levels exhibit robust miR173-initiated trans-acting cascade silencing.
    Tripathi AM; Singh R; Verma AK; Singh A; Mishra P; Dwivedi V; Narayan S; Gandhivel VHS; Shirke PA; Shivaprasad PV; Roy S
    Plant J; 2023 May; 114(4):855-874. PubMed ID: 36883862
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173.
    Felippes FF; Weigel D
    EMBO Rep; 2009 Mar; 10(3):264-70. PubMed ID: 19180117
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis.
    Cuperus JT; Carbonell A; Fahlgren N; Garcia-Ruiz H; Burke RT; Takeda A; Sullivan CM; Gilbert SD; Montgomery TA; Carrington JC
    Nat Struct Mol Biol; 2010 Aug; 17(8):997-1003. PubMed ID: 20562854
    [TBL] [Abstract][Full Text] [Related]  

  • 85. 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.
    Yoshikawa M; Iki T; Tsutsui Y; Miyashita K; Poethig RS; Habu Y; Ishikawa M
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):4117-22. PubMed ID: 23417299
    [TBL] [Abstract][Full Text] [Related]  

  • 86. syn-tasiRnas targeting the coat protein of potato virus Y confer antiviral resistance in
    Zhao X; Gao Q; Wang H; Yue J; An D; Li B; Yan F; Carmen SM; Zhao Y; Zhou H; Zhao M
    Plant Signal Behav; 2024 Dec; 19(1):2358270. PubMed ID: 38796845
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Large Artificial microRNA Cluster Genes Confer Effective Resistance against Multiple Tomato Yellow Leaf Curl Viruses in Transgenic Tomato.
    Khalid A; Zhang X; Ji H; Yasir M; Farooq T; Dai X; Li F
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299158
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Strategies for Engineering Virus Resistance in Potato.
    Liu J; Yue J; Wang H; Xie L; Zhao Y; Zhao M; Zhou H
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176794
    [TBL] [Abstract][Full Text] [Related]  

  • 89. smalldisco, a pipeline for siRNA discovery and 3' tail identification.
    Caldas IV; Kelley LH; Ahmed-Braimah YH; Maine EM
    G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 37094819
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant.
    Halder K; Chaudhuri A; Abdin MZ; Datta A
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834556
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Role of phasiRNAs in plant-pathogen interactions: molecular perspectives and bioinformatics tools.
    Jyothsna S; Alagu M
    Physiol Mol Biol Plants; 2022 May; 28(5):947-961. PubMed ID: 35722509
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Recent Advances in Plant Gene Silencing Methods.
    Pandey P; Mysore KS; Senthil-Kumar M
    Methods Mol Biol; 2022; 2408():1-22. PubMed ID: 35325413
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Systemic silencing of an endogenous plant gene by two classes of mobile 21-nucleotide artificial small RNAs.
    Cisneros AE; de la Torre-Montaña A; Carbonell A
    Plant J; 2022 May; 110(4):1166-1181. PubMed ID: 35277899
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology.
    Sanan-Mishra N; Abdul Kader Jailani A; Mandal B; Mukherjee SK
    Front Plant Sci; 2021; 12():610283. PubMed ID: 33737942
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Extensive Analysis of miRNA Trimming and Tailing Indicates that AGO1 Has a Complex Role in miRNA Turnover.
    Giudicatti AJ; Tomassi AH; Manavella PA; Arce AL
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33573197
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Regulation of Female Germline Specification via Small RNA Mobility in Arabidopsis.
    Su Z; Wang N; Hou Z; Li B; Li D; Liu Y; Cai H; Qin Y; Chen X
    Plant Cell; 2020 Sep; 32(9):2842-2854. PubMed ID: 32703817
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome.
    Zhao T; Tao X; Li M; Gao M; Chen J; Zhou N; Mei G; Fang L; Ding L; Zhou B; Zhang T; Guan X
    BMC Plant Biol; 2020 May; 20(1):219. PubMed ID: 32414380
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs.
    López-Dolz L; Spada M; Daròs JA; Carbonell A
    Nucleic Acids Res; 2020 Jun; 48(11):6234-6250. PubMed ID: 32396204
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus.
    Zhao X; Hu K; Yan M; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J
    Mol Genet Genomics; 2020 Jul; 295(4):981-999. PubMed ID: 32306107
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance.
    Carbonell A; Lisón P; Daròs JA
    Plant J; 2019 Nov; 100(4):720-737. PubMed ID: 31350772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.