These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19066590)

  • 1. Microfabrication of chip-sized scaffolds for three-dimensional cell cultivation.
    Giselbrecht S; Gottwald E; Truckenmueller R; Trautmann C; Welle A; Guber A; Saile V; Gietzelt T; Weibezahn KF
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microthermoforming as a novel technique for manufacturing scaffolds in tissue engineering (CellChips).
    Giselbrecht S; Gietzelt T; Gottwald E; Guber AE; Trautmann C; Truckenmüller R; Weibezahn KF
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):151-7. PubMed ID: 16475860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible fluidic microchips based on thermoformed and locally modified thin polymer films.
    Truckenmüller R; Giselbrecht S; van Blitterswijk C; Dambrowsky N; Gottwald E; Mappes T; Rolletschek A; Saile V; Trautmann C; Weibezahn KF; Welle A
    Lab Chip; 2008 Sep; 8(9):1570-9. PubMed ID: 18818815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films.
    Giselbrecht S; Gietzelt T; Gottwald E; Trautmann C; Truckenmüller R; Weibezahn KF; Welle A
    Biomed Microdevices; 2006 Sep; 8(3):191-9. PubMed ID: 16718404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip-based three-dimensional cell culture in perfused micro-bioreactors.
    Gottwald E; Lahni B; Thiele D; Giselbrecht S; Welle A; Weibezahn KF
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microthermoforming of flexible, not-buried hollow microstructures for chip-based life sciences applications.
    Truckenmüller R; Giselbrecht S
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):163-6. PubMed ID: 16475862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoforming of film-based biomedical microdevices.
    Truckenmüller R; Giselbrecht S; Rivron N; Gottwald E; Saile V; van den Berg A; Wessling M; van Blitterswijk C
    Adv Mater; 2011 Mar; 23(11):1311-29. PubMed ID: 21400590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity.
    de Jong J; Ankoné B; Lammertink RG; Wessling M
    Lab Chip; 2005 Nov; 5(11):1240-7. PubMed ID: 16234947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes.
    Heidi Au HT; Cui B; Chu ZE; Veres T; Radisic M
    Lab Chip; 2009 Feb; 9(4):564-75. PubMed ID: 19190792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser microfabrication of a microheater chip for cell culture outside a cell incubator.
    Nieto D; McGlynn P; de la Fuente M; Lopez-Lopez R; O'connor GM
    Colloids Surf B Biointerfaces; 2017 Jun; 154():263-269. PubMed ID: 28347948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities.
    Do J; Ahn CH
    Lab Chip; 2008 Apr; 8(4):542-9. PubMed ID: 18369508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs.
    Hagemann C; Bailey MCD; Carraro E; Stankevich KS; Lionello VM; Khokhar N; Suklai P; Moreno-Gonzalez C; O'Toole K; Konstantinou G; Dix CL; Joshi S; Giagnorio E; Bergholt MS; Spicer CD; Imbert A; Tedesco FS; Serio A
    PLoS Biol; 2024 Mar; 22(3):e3002503. PubMed ID: 38478490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially controlled cell adhesion on three-dimensional substrates.
    Richter C; Reinhardt M; Giselbrecht S; Leisen D; Trouillet V; Truckenmüller R; Blau A; Ziegler C; Welle A
    Biomed Microdevices; 2010 Oct; 12(5):787-95. PubMed ID: 20480241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication Methods for Microfluidic Devices: An Overview.
    Scott SM; Ali Z
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single step patterning of molecularly imprinted polymers for large scale fabrication of microbiochips.
    Guillon S; Lemaire R; Linares AV; Haupt K; Ayela C
    Lab Chip; 2009 Oct; 9(20):2987-91. PubMed ID: 19789754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.