BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19066733)

  • 1. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles.
    Hsieh HC; Kuan IC; Lee SL; Tien GY; Wang YJ; Yu CY
    Biotechnol Lett; 2009 Apr; 31(4):557-63. PubMed ID: 19066733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of native and double D-amino acid oxidases from Rhodosporidium toruloides and Trigonopsis variabilis by immobilization on streptavidin-coated magnetic beads.
    Wang SJ; Yu CY; Kuan IC
    Biotechnol Lett; 2008 Nov; 30(11):1973-81. PubMed ID: 18594772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through his-tag.
    Kuan I; Liao R; Hsieh H; Chen K; Yu C
    J Biosci Bioeng; 2008 Feb; 105(2):110-5. PubMed ID: 18343336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle.
    Chien LJ; Lee CK
    Biotechnol Bioeng; 2008 Jun; 100(2):223-30. PubMed ID: 18078291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkyl-substituted methoxysilanes enhance the activity and stability of D-amino acid oxidase encapsulated in biomimetic silica.
    Kuan IC; Chuang CA; Lee SL; Yu CY
    Biotechnol Lett; 2012 Aug; 34(8):1493-8. PubMed ID: 22488440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of physicochemical tools to determine the choice of optimal enzyme: stabilization of D-amino acid oxidase.
    Betancor L; Hidalgo A; Fernández-Lorente G; Mateo C; Rodríguez V; Fuentes M; López-Gallego F; Fernández-Lafuente R; Guisan JM
    Biotechnol Prog; 2003; 19(3):784-8. PubMed ID: 12790639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase.
    Qiu H; Li Y; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Bioresour Technol; 2009 Sep; 100(17):3837-42. PubMed ID: 19349165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles.
    Li GY; Huang KL; Jiang YR; Yang DL; Ding P
    Int J Biol Macromol; 2008 Jun; 42(5):405-12. PubMed ID: 18456317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports.
    López-Gallego F; Betancor L; Mateo C; Hidalgo A; Alonso-Morales N; Dellamora-Ortiz G; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2005 Sep; 119(1):70-5. PubMed ID: 16039744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger.
    Betancor L; López-Gallego F; Hidalgo A; Alonso-Morales N; Dellamora-Ortiz G; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2006 Jan; 121(2):284-9. PubMed ID: 16153734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase.
    Konwarh R; Karak N; Rai SK; Mukherjee AK
    Nanotechnology; 2009 Jun; 20(22):225107. PubMed ID: 19433867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4).
    Saiyed ZM; Sharma S; Godawat R; Telang SD; Ramchand CN
    J Biotechnol; 2007 Sep; 131(3):240-4. PubMed ID: 17706825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of beta-galactosidase onto magnetic beads.
    Zhang S; Gao S; Gao G
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1386-93. PubMed ID: 19288068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit fusion of two yeast D-amino acid oxidases enhances their thermostability and resistance to H2O2.
    Wang SJ; Yu CY; Lee CK; Chern MK; Kuan IC
    Biotechnol Lett; 2008 Aug; 30(8):1415-22. PubMed ID: 18330517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocatalytic activity of recombinant human β-mannosidase immobilized onto magnetic nanoparticles for bioprocess.
    Samra ZQ; Dar N; Athar MA
    Prep Biochem Biotechnol; 2012; 42(1):97-112. PubMed ID: 22239711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of Trigonopsis variabilis D-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme.
    Nahalka J; Dib I; Nidetzky B
    Biotechnol Bioeng; 2008 Feb; 99(2):251-60. PubMed ID: 17680679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of D-amino acid oxidase for low substrate concentrations--towards a cancer enzyme therapy.
    Rosini E; Pollegioni L; Ghisla S; Orru R; Molla G
    FEBS J; 2009 Sep; 276(17):4921-32. PubMed ID: 19694805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of D-amino acid oxidase in presence of ionic liquids.
    Lutz-Wahl S; Trost EM; Wagner B; Manns A; Fischer L
    J Biotechnol; 2006 Jun; 124(1):163-71. PubMed ID: 16516324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of silica-derived nano-supporters on cellobiase after immobilization.
    Wang P; Hu X; Cook S; Hwang HM
    Appl Biochem Biotechnol; 2009 Jul; 158(1):88-96. PubMed ID: 18679593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles.
    Singh RK; Zhang YW; Nguyen NP; Jeya M; Lee JK
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):337-44. PubMed ID: 20811797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.