BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 19067173)

  • 1. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R
    Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube-based neurochips.
    David-Pur M; Shein M; Hanein Y
    Methods Mol Biol; 2010; 625():171-7. PubMed ID: 20422389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-to-one neuron-electrode interfacing.
    Greenbaum A; Anava S; Ayali A; Shein M; David-Pur M; Ben-Jacob E; Hanein Y
    J Neurosci Methods; 2009 Sep; 182(2):219-24. PubMed ID: 19540264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor.
    Wang CW; Pan CY; Wu HC; Shih PY; Tsai CC; Liao KT; Lu LL; Hsieh WH; Chen CD; Chen YT
    Small; 2007 Aug; 3(8):1350-5. PubMed ID: 17576645
    [No Abstract]   [Full Text] [Related]  

  • 12. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry.
    Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H
    Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR
    Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue.
    Jang MJ; Namgung S; Hong S; Nam Y
    Nanotechnology; 2010 Jun; 21(23):235102. PubMed ID: 20463384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact self-wiring in cultured neural networks.
    Sorkin R; Gabay T; Blinder P; Baranes D; Ben-Jacob E; Hanein Y
    J Neural Eng; 2006 Jun; 3(2):95-101. PubMed ID: 16705265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.