BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19067503)

  • 1. Iron tris(bipyridine) PEG hydrogels with covalent and metal coordinate cross-links.
    Fiore GL; Klinkenberg JL; Pfister A; Fraser CL
    Biomacromolecules; 2009 Jan; 10(1):128-33. PubMed ID: 19067503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and unexpected reactivity of iron tris(bipyridine) complexes with poly(ethylene glycol) macroligands.
    Pfister A; Fraser CL
    Biomacromolecules; 2006 Feb; 7(2):459-68. PubMed ID: 16471917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of PEG dimethacrylates and their hydrogels.
    Lin-Gibson S; Bencherif S; Cooper JA; Wetzel SJ; Antonucci JM; Vogel BM; Horkay F; Washburn NR
    Biomacromolecules; 2004; 5(4):1280-7. PubMed ID: 15244441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels.
    Boztas AO; Guiseppi-Elie A
    Biomacromolecules; 2009 Aug; 10(8):2135-43. PubMed ID: 19601642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers.
    Du JZ; Sun TM; Weng SQ; Chen XS; Wang J
    Biomacromolecules; 2007 Nov; 8(11):3375-81. PubMed ID: 17902689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-textured PEG-based hydrogels with adjustable elasticity: Synthesis and characterization.
    Pfister PM; Wendlandt M; Neuenschwander P; Suter UW
    Biomaterials; 2007 Feb; 28(4):567-75. PubMed ID: 17023042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer formation between lipid-encased hydrogels contained in solid substrates.
    Sarles SA; Stiltner LJ; Williams CB; Leo DJ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3654-63. PubMed ID: 21067200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels.
    Bencherif SA; Sheehan JA; Hollinger JO; Walker LM; Matyjaszewski K; Washburn NR
    J Biomed Mater Res A; 2009 Jul; 90(1):142-53. PubMed ID: 18491397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol).
    Chao GT; Qian ZY; Huang MJ; Kan B; Gu YC; Gong CY; Yang JL; Wang K; Dai M; Li XY; Gou ML; Tu MJ; Wei YQ
    J Biomed Mater Res A; 2008 Apr; 85(1):36-46. PubMed ID: 17688254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hydrogels prepared from copolymerization of the different degrees of methacrylate-grafted chondroitin sulfate macromers and acrylic acid.
    Tsai MF; Tsai HY; Peng YS; Wang LF; Chen JS; Lu SC
    J Biomed Mater Res A; 2008 Mar; 84(3):727-39. PubMed ID: 17635031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives.
    Bartil T; Bounekhel M; Cedric C; Jeerome R
    Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering.
    Mosiewicz KA; Johnsson K; Lutolf MP
    J Am Chem Soc; 2010 May; 132(17):5972-4. PubMed ID: 20373804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate).
    Smeets NM; Bakaic E; Patenaude M; Hoare T
    Chem Commun (Camb); 2014 Mar; 50(25):3306-9. PubMed ID: 24531402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG-benzofulvene copolymer hydrogels for antibody delivery.
    Licciardi M; Grassi M; Di Stefano M; Feruglio L; Giuliani G; Valenti S; Cappelli A; Giammona G
    Int J Pharm; 2010 May; 390(2):183-90. PubMed ID: 20153413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of hydrogels formed from a glycidyl methacrylate derivative of galactomannan.
    Reis AV; Cavalcanti OA; Rubira AF; Muniz EC
    Int J Pharm; 2003 Nov; 267(1-2):13-25. PubMed ID: 14602380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.