These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 19067503)
1. Iron tris(bipyridine) PEG hydrogels with covalent and metal coordinate cross-links. Fiore GL; Klinkenberg JL; Pfister A; Fraser CL Biomacromolecules; 2009 Jan; 10(1):128-33. PubMed ID: 19067503 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and unexpected reactivity of iron tris(bipyridine) complexes with poly(ethylene glycol) macroligands. Pfister A; Fraser CL Biomacromolecules; 2006 Feb; 7(2):459-68. PubMed ID: 16471917 [TBL] [Abstract][Full Text] [Related]
3. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Lin-Gibson S; Bencherif S; Cooper JA; Wetzel SJ; Antonucci JM; Vogel BM; Horkay F; Washburn NR Biomacromolecules; 2004; 5(4):1280-7. PubMed ID: 15244441 [TBL] [Abstract][Full Text] [Related]
5. Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Boztas AO; Guiseppi-Elie A Biomacromolecules; 2009 Aug; 10(8):2135-43. PubMed ID: 19601642 [TBL] [Abstract][Full Text] [Related]
6. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation. Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Du JZ; Sun TM; Weng SQ; Chen XS; Wang J Biomacromolecules; 2007 Nov; 8(11):3375-81. PubMed ID: 17902689 [TBL] [Abstract][Full Text] [Related]
9. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization. Choi D; Lee W; Park J; Koh W Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111 [TBL] [Abstract][Full Text] [Related]
10. Surface-textured PEG-based hydrogels with adjustable elasticity: Synthesis and characterization. Pfister PM; Wendlandt M; Neuenschwander P; Suter UW Biomaterials; 2007 Feb; 28(4):567-75. PubMed ID: 17023042 [TBL] [Abstract][Full Text] [Related]
11. Bilayer formation between lipid-encased hydrogels contained in solid substrates. Sarles SA; Stiltner LJ; Williams CB; Leo DJ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3654-63. PubMed ID: 21067200 [TBL] [Abstract][Full Text] [Related]
12. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. Bencherif SA; Sheehan JA; Hollinger JO; Walker LM; Matyjaszewski K; Washburn NR J Biomed Mater Res A; 2009 Jul; 90(1):142-53. PubMed ID: 18491397 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol). Chao GT; Qian ZY; Huang MJ; Kan B; Gu YC; Gong CY; Yang JL; Wang K; Dai M; Li XY; Gou ML; Tu MJ; Wei YQ J Biomed Mater Res A; 2008 Apr; 85(1):36-46. PubMed ID: 17688254 [TBL] [Abstract][Full Text] [Related]
14. Characterization of hydrogels prepared from copolymerization of the different degrees of methacrylate-grafted chondroitin sulfate macromers and acrylic acid. Tsai MF; Tsai HY; Peng YS; Wang LF; Chen JS; Lu SC J Biomed Mater Res A; 2008 Mar; 84(3):727-39. PubMed ID: 17635031 [TBL] [Abstract][Full Text] [Related]
15. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
16. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives. Bartil T; Bounekhel M; Cedric C; Jeerome R Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110 [TBL] [Abstract][Full Text] [Related]
17. Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering. Mosiewicz KA; Johnsson K; Lutolf MP J Am Chem Soc; 2010 May; 132(17):5972-4. PubMed ID: 20373804 [TBL] [Abstract][Full Text] [Related]
18. Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). Smeets NM; Bakaic E; Patenaude M; Hoare T Chem Commun (Camb); 2014 Mar; 50(25):3306-9. PubMed ID: 24531402 [TBL] [Abstract][Full Text] [Related]
19. PEG-benzofulvene copolymer hydrogels for antibody delivery. Licciardi M; Grassi M; Di Stefano M; Feruglio L; Giuliani G; Valenti S; Cappelli A; Giammona G Int J Pharm; 2010 May; 390(2):183-90. PubMed ID: 20153413 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of hydrogels formed from a glycidyl methacrylate derivative of galactomannan. Reis AV; Cavalcanti OA; Rubira AF; Muniz EC Int J Pharm; 2003 Nov; 267(1-2):13-25. PubMed ID: 14602380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]