These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773 [TBL] [Abstract][Full Text] [Related]
3. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717 [TBL] [Abstract][Full Text] [Related]
4. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL; Arnaud P; Delaine T; Bernardes-Génisson V; Meunier B; Bernadou J J Mol Graph Model; 2008 Nov; 27(4):536-45. PubMed ID: 18955002 [TBL] [Abstract][Full Text] [Related]
5. NADH interactions with WT- and S94A-acyl carrier protein reductase from Mycobacterium tuberculosis: an ab initio study. Pantano S; Alber F; Lamba D; Carloni P Proteins; 2002 Apr; 47(1):62-8. PubMed ID: 11870865 [TBL] [Abstract][Full Text] [Related]
6. An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Oliveira JS; Sousa EH; Basso LA; Palaci M; Dietze R; Santos DS; Moreira IS Chem Commun (Camb); 2004 Feb; (3):312-3. PubMed ID: 14740053 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Zhao X; Yu H; Yu S; Wang F; Sacchettini JC; Magliozzo RS Biochemistry; 2006 Apr; 45(13):4131-40. PubMed ID: 16566587 [TBL] [Abstract][Full Text] [Related]
8. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA. Kumar V; Sobhia ME PLoS One; 2015; 10(12):e0144635. PubMed ID: 26658674 [TBL] [Abstract][Full Text] [Related]
9. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Rawat R; Whitty A; Tonge PJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976 [TBL] [Abstract][Full Text] [Related]
10. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Vilchèze C; Wang F; Arai M; Hazbón MH; Colangeli R; Kremer L; Weisbrod TR; Alland D; Sacchettini JC; Jacobs WR Nat Med; 2006 Sep; 12(9):1027-9. PubMed ID: 16906155 [TBL] [Abstract][Full Text] [Related]
11. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
12. 1H and 13C NMR characterization of pyridinium-type isoniazid-NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Broussy S; Bernardes-Génisson V; Coppel Y; Quémard A; Bernadou J; Meunier B Org Biomol Chem; 2005 Feb; 3(4):670-3. PubMed ID: 15703806 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the binding of isoniazid and analogues to Mycobacterium tuberculosis catalase-peroxidase. Zhao X; Yu S; Magliozzo RS Biochemistry; 2007 Mar; 46(11):3161-70. PubMed ID: 17309235 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Chollet A; Mourey L; Lherbet C; Delbot A; Julien S; Baltas M; Bernadou J; Pratviel G; Maveyraud L; Bernardes-Génisson V J Struct Biol; 2015 Jun; 190(3):328-37. PubMed ID: 25891098 [TBL] [Abstract][Full Text] [Related]
15. Docking studies on novel alkaloid tryptanthrin and its analogues against enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis. Tripathi A; Wadia N; Bindal D; Jana T Indian J Biochem Biophys; 2012 Dec; 49(6):435-41. PubMed ID: 23350278 [TBL] [Abstract][Full Text] [Related]
16. Superoxide reactivity of KatG: insights into isoniazid resistance pathways in TB. Ghiladi RA; Cabelli DE; Ortiz de Montellano PR J Am Chem Soc; 2004 Apr; 126(15):4772-3. PubMed ID: 15080669 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Schroeder EK; Basso LA; Santos DS; de Souza ON Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576 [TBL] [Abstract][Full Text] [Related]
18. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Subba Rao G; Vijayakrishnan R; Kumar M Chem Biol Drug Des; 2008 Nov; 72(5):444-9. PubMed ID: 19012578 [TBL] [Abstract][Full Text] [Related]
19. Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. Delaine T; Bernardes-Génisson V; Quémard A; Constant P; Meunier B; Bernadou J Eur J Med Chem; 2010 Oct; 45(10):4554-61. PubMed ID: 20696503 [TBL] [Abstract][Full Text] [Related]
20. 1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Broussy S; Coppel Y; Nguyen M; Bernadou J; Meunier B Chemistry; 2003 May; 9(9):2034-8. PubMed ID: 12740851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]