These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 190679)
21. On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Alber T; Banner DW; Bloomer AC; Petsko GA; Phillips D; Rivers PS; Wilson IA Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):159-71. PubMed ID: 6115415 [TBL] [Abstract][Full Text] [Related]
22. [Recent advance in the discovery of allosteric inhibitors binding to the AMP site of fructose-1,6-bisphosphatase]. Li ZM; Bie JB; Song HR; Xu BL Yao Xue Xue Bao; 2011 Nov; 46(11):1291-300. PubMed ID: 22260018 [TBL] [Abstract][Full Text] [Related]
23. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Lolis E; Petsko GA Biochemistry; 1990 Jul; 29(28):6619-25. PubMed ID: 2204418 [TBL] [Abstract][Full Text] [Related]
24. Mechanism of allosteric activation of glycogen phosphorylase probed by the reactivity of essential arginyl residues. Physicochemical and kinetic studies. Dreyfus M; Vandenbunder B; Buc H Biochemistry; 1980 Jul; 19(15):3634-42. PubMed ID: 6773545 [No Abstract] [Full Text] [Related]
25. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity. Lu G; Stec B; Giroux EL; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152 [TBL] [Abstract][Full Text] [Related]
26. Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. Erion MD; Dang Q; Reddy MR; Kasibhatla SR; Huang J; Lipscomb WN; van Poelje PD J Am Chem Soc; 2007 Dec; 129(50):15480-90. PubMed ID: 18041833 [TBL] [Abstract][Full Text] [Related]
27. [Experiments on the inhibition of glycolytic enzymes by diisopropylfluroophosphate]. Domagk GF; Sörensen N; Zech R Hoppe Seylers Z Physiol Chem; 1967 Apr; 348(4):381-4. PubMed ID: 4231654 [No Abstract] [Full Text] [Related]
28. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue. Borchardt RT; Schasteen CS Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328 [No Abstract] [Full Text] [Related]
29. The arginines of cytochrome c. The reduction-binding site for 2,3-butanedione and ascorbate. Pande J; Myer JP J Biol Chem; 1980 Dec; 255(23):11094-7. PubMed ID: 6254959 [TBL] [Abstract][Full Text] [Related]
30. Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli. Stec B; Abraham R; Giroux E; Kantrowitz ER Protein Sci; 1996 Aug; 5(8):1541-53. PubMed ID: 8844845 [TBL] [Abstract][Full Text] [Related]
31. Glucosephosphate and triosephosphate isomerases: significance of isozyme structural differences in evolution, physiology, and aging. Gracy RW Isozymes Curr Top Biol Med Res; 1982; 6():169-205. PubMed ID: 6762366 [No Abstract] [Full Text] [Related]
32. [Enzymes of fructose metabolism. Activity and distribution in the rat liver]. Heinz F; Lamprecht W Hoppe Seylers Z Physiol Chem; 1967 Jul; 348(7):855-63. PubMed ID: 4298581 [No Abstract] [Full Text] [Related]
33. Analysis and predication of structural motifs in the glycolytic enzymes. Sternberg MJ; Cohen FE; Taylor WR; Feldmann RJ Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):177-89. PubMed ID: 6115417 [TBL] [Abstract][Full Text] [Related]
34. Enzymes of glucose metabolism in liver of subjects with adult-onset diabetes. Belfiore F; Romeo F; Napoli E; Lo Vecchio L Diabetes; 1974 Apr; 23(4):293-301. PubMed ID: 4150923 [No Abstract] [Full Text] [Related]
35. The orientation and accessibility of substrates on the active site of triosephosphate isomerase. Webb MR; Knowles JR Biochemistry; 1975 Oct; 14(21):4692-8. PubMed ID: 1182110 [TBL] [Abstract][Full Text] [Related]
36. Functional consequences of modifying highly reactive arginyl residues of fructose 1,6-bisphosphatase. Loss of monovalent cation activation. Marcus F Biochemistry; 1975 Aug; 14(17):3916-21. PubMed ID: 169892 [TBL] [Abstract][Full Text] [Related]
37. Evidence for an essential arginyl residue in bovine milk gamma-glutamyltransferase. Fushiki T; Iwami K; Yasumoto K; Iwai K J Biochem; 1983 Mar; 93(3):795-800. PubMed ID: 6135694 [TBL] [Abstract][Full Text] [Related]
38. Functional maps of the junctions between interglobular contacts and active sites in glycolytic enzymes -- a comparative analysis of the biochemical and structural data. Torshin IY Med Sci Monit; 2002 Apr; 8(4):BR123-35. PubMed ID: 11951058 [TBL] [Abstract][Full Text] [Related]
39. Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a review of relationships between the two activities of the enzyme. El-Maghrabi MR; Pilkis SJ J Cell Biochem; 1984; 26(1):1-17. PubMed ID: 6096384 [TBL] [Abstract][Full Text] [Related]