These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 190679)
41. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Nickbarg EB; Davenport RC; Petsko GA; Knowles JR Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777 [TBL] [Abstract][Full Text] [Related]
42. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors. Xue Y; Huang S; Liang JY; Zhang Y; Lipscomb WN Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12482-6. PubMed ID: 7809062 [TBL] [Abstract][Full Text] [Related]
43. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase. Schellenberger W; Eschrich K; Hofmann E Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456 [TBL] [Abstract][Full Text] [Related]
44. Evolution of enzyme function and the development of catalytic efficiency. Albery WJ; Knowles JR Biochemistry; 1976 Dec; 15(25):5631-40. PubMed ID: 999839 [No Abstract] [Full Text] [Related]
45. Selective interaction of glycosomal enzymes from Trypanosoma brucei with hydrophobic cyclic hexapeptides. Callens M; Van Roy J; Zeelen JP; Borchert TV; Nalis D; Wierenga RK; Opperdoes FR Biochem Biophys Res Commun; 1993 Sep; 195(2):667-72. PubMed ID: 8373406 [TBL] [Abstract][Full Text] [Related]
46. Feedback inhibition of key glycolytic enzymes in liver: action of free fatty acids. Weber G; Convery HJ; Lea MA; Stamm NB Science; 1966 Dec; 154(3754):1357-60. PubMed ID: 4288679 [TBL] [Abstract][Full Text] [Related]
47. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities. Shyur LF; Aleshin AE; Fromm HJ Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527 [TBL] [Abstract][Full Text] [Related]
48. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase. Zhang Y; Liang JY; Huang S; Lipscomb WN J Mol Biol; 1994 Dec; 244(5):609-24. PubMed ID: 7990142 [TBL] [Abstract][Full Text] [Related]
49. Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes. Choe JY; Fromm HJ; Honzatko RB Biochemistry; 2000 Jul; 39(29):8565-74. PubMed ID: 10913263 [TBL] [Abstract][Full Text] [Related]
50. Selective alteration of the regulatory properties of fructose 1,6-diphosphatase by modification with pyridoxal 5'-phosphate. Colombo G; Hubert E; Marcus F Biochemistry; 1972 May; 11(10):1798-803. PubMed ID: 4337193 [No Abstract] [Full Text] [Related]
51. How can a catalytic lesion be offset? The energetics of two pseudorevertant triosephosphate isomerases. Blacklow SC; Knowles JR Biochemistry; 1990 May; 29(17):4099-108. PubMed ID: 2361134 [TBL] [Abstract][Full Text] [Related]
52. X-ray studies of glycolytic enzymes. Blake CC Essays Biochem; 1975; 11():37-79. PubMed ID: 174910 [No Abstract] [Full Text] [Related]
53. Arginyl residues of adrenodoxin reductase as the anion recognition site for 2'-phosphate group of NADP+1. Nonaka Y; Sugiyama T; Yamano T J Biochem; 1982 Dec; 92(6):1693-701. PubMed ID: 7161255 [TBL] [Abstract][Full Text] [Related]
54. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues. Franks DJ; Tunnicliff G; Ngo TT Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013 [TBL] [Abstract][Full Text] [Related]
55. Fructose 1,6-diphosphatase from rabbit liver. XI. Relation between the adenosine 5'-monophosphate binding and the allosteric inhibition. Pontremoli S; Grazi E; Accorsi A Biochem Biophys Res Commun; 1968 Oct; 33(2):335-9. PubMed ID: 4301877 [No Abstract] [Full Text] [Related]
56. Inactivation precedes changes in allosteric properties and conformation of D-glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase during denaturation by guanidinium chloride. Jiang RF; Tsou CL Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):241-5. PubMed ID: 7945247 [TBL] [Abstract][Full Text] [Related]
57. Identification of the target amino acids in the site-specific inactivation of triose phosphate isomerase by ferrate anion. Steczko J; Hermodson M; Axelrod B; Dziembor-Kentzer E J Biol Chem; 1983 Nov; 258(21):13148-54. PubMed ID: 6630227 [TBL] [Abstract][Full Text] [Related]
58. Rational engineering of enzyme allosteric regulation through sequence evolution analysis. Yang JS; Seo SW; Jang S; Jung GY; Kim S PLoS Comput Biol; 2012; 8(7):e1002612. PubMed ID: 22807670 [TBL] [Abstract][Full Text] [Related]
59. Photooxidation of NADH by 2,3-butanedione: a potential source of error in studies on active site arginyl residues. Homyk M; Bragg PD Can J Biochem; 1979 Jun; 57(6):977-9. PubMed ID: 224991 [TBL] [Abstract][Full Text] [Related]
60. Modification of an essential arginine of carbamate kinase. Pillai RP; Marshall M; Villafranca JJ Arch Biochem Biophys; 1980 Jan; 199(1):16-20. PubMed ID: 6243907 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]