These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 19068327)
1. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors. Hu W; Li CM; Dong H Anal Chim Acta; 2008 Dec; 630(1):67-74. PubMed ID: 19068327 [TBL] [Abstract][Full Text] [Related]
2. In situ studies of protein adsorptions on poly(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance. Hu W; Li CM; Cui X; Dong H; Zhou Q Langmuir; 2007 Feb; 23(5):2761-7. PubMed ID: 17309219 [TBL] [Abstract][Full Text] [Related]
3. An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: comparison between SPR and electrochemical responses from polymer formation to protein immunosensing. Dong H; Cao X; Li CM; Hu W Biosens Bioelectron; 2008 Feb; 23(7):1055-62. PubMed ID: 18078745 [TBL] [Abstract][Full Text] [Related]
4. Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: a review. Lê HQ; Sauriat-Dorizon H; Korri-Youssoufi H Anal Chim Acta; 2010 Jul; 674(1):1-8. PubMed ID: 20638492 [TBL] [Abstract][Full Text] [Related]
5. TiO2 nanowire FET device: encapsulation of biomolecules by electro polymerized pyrrole propylic acid. Chu YM; Lin CC; Chang HC; Li C; Guo C Biosens Bioelectron; 2011 Jan; 26(5):2334-40. PubMed ID: 21036030 [TBL] [Abstract][Full Text] [Related]
6. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field. Chegel V; Whitcombe MJ; Turner NW; Piletsky SA Biosens Bioelectron; 2009 Jan; 24(5):1270-5. PubMed ID: 18789676 [TBL] [Abstract][Full Text] [Related]
7. In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly(pyrrole-3-carboxylic acid) thin-film-based biosensor applications. Janmanee R; Baba A; Phanichphant S; Sriwichai S; Shinbo K; Kato K; Kaneko F ACS Appl Mater Interfaces; 2012 Aug; 4(8):4270-5. PubMed ID: 22856530 [TBL] [Abstract][Full Text] [Related]
8. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Ionescu RE; Jaffrezic-Renault N; Bouffier L; Gondran C; Cosnier S; Pinacho DG; Marco MP; Sánchez-Baeza FJ; Healy T; Martelet C Biosens Bioelectron; 2007 Nov; 23(4):549-55. PubMed ID: 17826084 [TBL] [Abstract][Full Text] [Related]
9. Biopharmaceutical production: Applications of surface plasmon resonance biosensors. Thillaivinayagalingam P; Gommeaux J; McLoughlin M; Collins D; Newcombe AR J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jan; 878(2):149-53. PubMed ID: 19762290 [TBL] [Abstract][Full Text] [Related]
10. Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization. Dong H; Li CM; Chen W; Zhou Q; Zeng ZX; Luong JH Anal Chem; 2006 Nov; 78(21):7424-31. PubMed ID: 17073408 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of sensitivity of SPR protein microarray using a novel 3D protein immobilization. Tanaka H; Hanasaki M; Isojima T; Takeuchi H; Shiroya T; Kawaguchi H Colloids Surf B Biointerfaces; 2009 May; 70(2):259-65. PubMed ID: 19201170 [TBL] [Abstract][Full Text] [Related]
12. Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial. Li Y; Neoh KG; Cen L; Kang ET Langmuir; 2005 Nov; 21(23):10702-9. PubMed ID: 16262340 [TBL] [Abstract][Full Text] [Related]
13. The preparation and characterization of poly(o-phenylenediamine)/gold nanoparticles interface for immunoassay by surface plasmon resonance and electrochemistry. Wang Q; Tang H; Xie Q; Jia X; Zhang Y; Tan L; Yao S Colloids Surf B Biointerfaces; 2008 Jun; 63(2):254-61. PubMed ID: 18242962 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices. Arslan A; Kiralp S; Toppare L; Yagci Y Int J Biol Macromol; 2005 Apr; 35(3-4):163-7. PubMed ID: 15811471 [TBL] [Abstract][Full Text] [Related]
15. Polypyrrole oligosaccharide array and surface plasmon resonance imaging for the measurement of glycosaminoglycan binding interactions. Mercey E; Sadir R; Maillart E; Roget A; Baleux F; Lortat-Jacob H; Livache T Anal Chem; 2008 May; 80(9):3476-82. PubMed ID: 18348577 [TBL] [Abstract][Full Text] [Related]
16. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Yamaguchi S; Mannen T; Zako T; Kamiya N; Nagamune T Biotechnol Prog; 2003; 19(4):1348-54. PubMed ID: 12892501 [TBL] [Abstract][Full Text] [Related]
17. Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Aravinda CL; Cosnier S; Chen W; Myung NV; Mulchandani A Biosens Bioelectron; 2009 Jan; 24(5):1451-5. PubMed ID: 18930385 [TBL] [Abstract][Full Text] [Related]
18. Biosensing approach for alcohol determination using immobilized alcohol oxidase. Yildiz HB; Toppare L Biosens Bioelectron; 2006 Jun; 21(12):2306-10. PubMed ID: 16352430 [TBL] [Abstract][Full Text] [Related]
19. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Dudak FC; Boyaci IH Biotechnol J; 2009 Jul; 4(7):1003-11. PubMed ID: 19288516 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of a pyrrole-alginate conjugate and its application in a biosensor construction. Abu-Rabeah K; Polyak B; Ionescu RE; Cosnier S; Marks RS Biomacromolecules; 2005; 6(6):3313-8. PubMed ID: 16283760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]