These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 19068327)
21. Polypyrrole-oligosaccharide microarray for the measurement of biomolecular interactions by surface plasmon resonance imaging. Bartoli J; Roget A; Livache T Methods Mol Biol; 2012; 808():69-86. PubMed ID: 22057518 [TBL] [Abstract][Full Text] [Related]
22. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance. Fu Y; Chen C; Xie Q; Xu X; Zou C; Zhou Q; Tan L; Tang H; Zhang Y; Yao S Anal Chem; 2008 Aug; 80(15):5829-38. PubMed ID: 18593192 [TBL] [Abstract][Full Text] [Related]
23. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection. Hu W; Lu Z; Liu Y; Li CM Langmuir; 2010 Jun; 26(11):8386-91. PubMed ID: 20201594 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Ramanavicius A; Finkelsteinas A; Cesiulis H; Ramanaviciene A Bioelectrochemistry; 2010 Aug; 79(1):11-6. PubMed ID: 19879816 [TBL] [Abstract][Full Text] [Related]
26. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Phillips KS; Han JH; Cheng Q Anal Chem; 2007 Feb; 79(3):899-907. PubMed ID: 17263314 [TBL] [Abstract][Full Text] [Related]
27. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. Haddour N; Cosnier S; Gondran C J Am Chem Soc; 2005 Apr; 127(16):5752-3. PubMed ID: 15839649 [TBL] [Abstract][Full Text] [Related]
28. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Suwansa-ard S; Kanatharana P; Asawatreratanakul P; Wongkittisuksa B; Limsakul C; Thavarungkul P Biosens Bioelectron; 2009 Aug; 24(12):3436-41. PubMed ID: 19553100 [TBL] [Abstract][Full Text] [Related]
29. Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin. Giroud F; Gorgy K; Gondran C; Cosnier S; Pinacho DG; Marco MP; Sánchez-Baeza FJ Anal Chem; 2009 Oct; 81(20):8405-9. PubMed ID: 19824714 [TBL] [Abstract][Full Text] [Related]
30. Immobilization of tyrosinase and alcohol oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole. Yildiz HB; Sahmetlioglu E; Boyukbayram AE; Toppare L; Yagci Y Int J Biol Macromol; 2007 Aug; 41(3):332-7. PubMed ID: 17555810 [TBL] [Abstract][Full Text] [Related]
31. Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. Ionescu RE; Gondran C; Gheber LA; Cosnier S; Marks RS Anal Chem; 2004 Nov; 76(22):6808-13. PubMed ID: 15538808 [TBL] [Abstract][Full Text] [Related]
32. Selective detection of dopamine using a combined permselective film of electropolymerized (poly-tyramine and poly-pyrrole-1-propionic acid) on a boron-doped diamond electrode. Shang F; Liu Y; Hrapovic S; Glennon JD; Luong JH Analyst; 2009 Mar; 134(3):519-27. PubMed ID: 19238289 [TBL] [Abstract][Full Text] [Related]
33. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Rajesh ; Bisht V; Takashima W; Kaneto K Biomaterials; 2005 Jun; 26(17):3683-90. PubMed ID: 15744952 [TBL] [Abstract][Full Text] [Related]
35. Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry. Tang DP; Yuan R; Chai YQ Bioprocess Biosyst Eng; 2006 Apr; 28(5):315-21. PubMed ID: 16525807 [TBL] [Abstract][Full Text] [Related]
36. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Boozer C; Kim G; Cong S; Guan H; Londergan T Curr Opin Biotechnol; 2006 Aug; 17(4):400-5. PubMed ID: 16837183 [TBL] [Abstract][Full Text] [Related]
37. New approach to writing and simultaneous reading of micropatterns: combining surface plasmon resonance imaging with scanning electrochemical microscopy (SECM). Szunerits S; Knorr N; Calemczuk R; Livache T Langmuir; 2004 Oct; 20(21):9236-41. PubMed ID: 15461512 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical formation and characterization of copolymers based on N-pyrrole derivatives. Okner R; Domb AJ; Mandler D Biomacromolecules; 2007 Sep; 8(9):2928-35. PubMed ID: 17676897 [TBL] [Abstract][Full Text] [Related]
39. One-step co-electropolymerized conducting polymer-protein composite film for direct electrochemistry-based biosensors. Lu Q; Li CM Biosens Bioelectron; 2008 Dec; 24(4):773-8. PubMed ID: 18718751 [TBL] [Abstract][Full Text] [Related]