These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19068650)

  • 1. [Simulating methidathion transport in soil chromatographic column].
    Tao YQ; Jiang X; Bian YR; Yang XL; Wang F
    Huan Jing Ke Xue; 2008 Sep; 29(9):2599-605. PubMed ID: 19068650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of biosolids and a cationic surfactant to modify methidathion leaching. Modelling with pescol.
    Sánchez L; Romero E; Peña A
    Chemosphere; 2003 Dec; 53(8):843-50. PubMed ID: 14505705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Nitrate vertical transport and simulating model in saturated soils in typical region].
    Deng JC; Chen XM; Jiang X; Zhang JB; Lu X
    Huan Jing Ke Xue; 2005 Mar; 26(2):200-5. PubMed ID: 16004329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of storage temperature on degradation of methidathion in fortified orange and peach juices.
    Kyriakidis NB; Athanasopoulos P; Georgitsanakou I; Kyriakidis NB; Athanasopoulos P; Georgitsanakou I
    J AOAC Int; 2000; 83(4):967-70. PubMed ID: 10995123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous time random walk model better describes the tailing of atrazine transport in soil.
    Deng J; Jiang X; Zhang X; Hu W; Crawford JW
    Chemosphere; 2008 May; 71(11):2150-7. PubMed ID: 18289634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photostability of methidathion in wet soil amended with biosolid and a surfactant under solar irradiation.
    Sánchez L; Romero E; Peña A
    Chemosphere; 2005 May; 59(7):969-76. PubMed ID: 15823330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced soil sorption of methidathion using sewage sludge and surfactants.
    Sánchez L; Romero E; Sánchez-Rasero F; Dios G; Peña A
    Pest Manag Sci; 2003 Aug; 59(8):857-64. PubMed ID: 12916766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns.
    Bi E; Zhang L; Schmidt TC; Haderlein SB
    J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Chromatographic determination of Bolstar in soil, plants and water].
    Krasnykh AA; Shustov VS; Zelenina MF
    Gig Sanit; 1982 Mar; (3):53-4. PubMed ID: 7084716
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.
    Bakas I; Oujji NB; Moczko E; Istamboulie G; Piletsky S; Piletska E; Ait-Ichou I; Ait-Addi E; Noguer T; Rouillon R
    Anal Chim Acta; 2012 Jul; 734():99-105. PubMed ID: 22704478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The loss of phosdrin and phorate insecticides from a range of soil types.
    Burns RG
    Bull Environ Contam Toxicol; 1971; 6(4):316-21. PubMed ID: 5153773
    [No Abstract]   [Full Text] [Related]  

  • 12. [The determination of phoxim in cadaveric material by gas-liquid chromatography].
    Orlova AM; Salomatin EM
    Sud Med Ekspert; 1992; 35(2):32-5. PubMed ID: 1440737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand.
    Leiva JA; Nkedi-Kizza P; Morgan KT; Kadyampakeni DM
    PLoS One; 2017; 12(8):e0183767. PubMed ID: 28837702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl2(·-) radical.
    Caregnato P; Rosso JA; Soler JM; Arques A; Mártire DO; Gonzalez MC
    Water Res; 2013 Jan; 47(1):351-62. PubMed ID: 23137829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and sorption of pirimiphos-methyl in two Nigerian soils.
    Eneji IS; Buncel E; vanLoon GW
    J Agric Food Chem; 2002 Sep; 50(20):5634-9. PubMed ID: 12236690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The persistence of Zinophos and Dyfonate in soil.
    Kiigemagi U; Terriere LC
    Bull Environ Contam Toxicol; 1971; 6(4):355-61. PubMed ID: 5153779
    [No Abstract]   [Full Text] [Related]  

  • 17. Dissipation of insecticides in a Mediterranean soil in the presence of wastewater and surfactant solutions. A kinetic model approach.
    Hernández-Soriano MC; Mingorance MD; Peña A
    Water Res; 2009 May; 43(9):2481-92. PubMed ID: 19349059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.
    Bakas I; Hayat A; Piletsky S; Piletska E; Chehimi MM; Noguer T; Rouillon R
    Talanta; 2014 Dec; 130():294-8. PubMed ID: 25159412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinalphos persistence and leaching under field conditions and effects of residues on dehydrogenase and alkaline phosphomonoesterases activities in soil.
    Mayanglambam T; Vig K; Singh DK
    Bull Environ Contam Toxicol; 2005 Dec; 75(6):1067-76. PubMed ID: 16402294
    [No Abstract]   [Full Text] [Related]  

  • 20. Adsorption, desorption, and mobility of two insecticides in Malaysian agricultural soil.
    Ismai BS; Enoma AO; Cheah UB; Lum KY; Malik Z
    J Environ Sci Health B; 2002 Jul; 37(4):355-64. PubMed ID: 12081027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.