These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 19068834)

  • 1. Emission characteristics and removal of heavy metals in flue gas: a case study in waste incineration and coal-fired power plants.
    Zhao B; Liu W; Wang X; Lu J
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8883-8897. PubMed ID: 38180667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner.
    Yadav VK; Gnanamoorthy G; Cabral-Pinto MMS; Alam J; Ahamed M; Gupta N; Singh B; Choudhary N; Inwati GK; Yadav KK
    Environ Sci Pollut Res Int; 2021 Feb; ():. PubMed ID: 33625705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for measuring indoor exposure to coal fly ash and heavy metals, and neurobehavioural symptoms in children aged 6 to 14 years old.
    Zierold KM; Sears CG; Hagemeyer AN; Brock GN; Polivka BJ; Zhang CH; Sears L
    BMJ Open; 2020 Nov; 10(11):e038960. PubMed ID: 33234632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion.
    Andersen ME; Modak N; Winterrowd CK; Lee CW; Roberts WL; Wendt JOL; Linak WP
    Proc Combust Inst; 2017; 36(6):4029-4037. PubMed ID: 30344457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Prediction of Charge State from EELS Spectra of Third Row Transition Metals.
    Gleason SP; Lu D; Ciston J
    Microsc Microanal; 2023 Jul; 29(Supplement_1):1921-1922. PubMed ID: 37612971
    [No Abstract]   [Full Text] [Related]  

  • 6. Nanoscale heterogeneity of arsenic and selenium species in coal fly ash particles: analysis using enhanced spectroscopic imaging and speciation techniques.
    Rivera NA; Ling FT; Jin Z; Pattammattel A; Yan H; Chu YS; Peters CA; Hsu-Kim H
    Environ Sci Nano; 2023 Jul; 10(7):1768-1777. PubMed ID: 37457049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coal fly ash is a major carbon flux in the Chang Jiang (Yangtze River) basin.
    Li GK; Fischer WW; Lamb MP; West AJ; Zhang T; Galy V; Wang XT; Li S; Qiu H; Li G; Zhao L; Chen J; Ji J
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash.
    Fu B; Hower JC; Dai S; Mardon SM; Liu G
    ACS Omega; 2018 Dec; 3(12):17637-17645. PubMed ID: 31458363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury capture by native fly ash carbons in coal-fired power plants.
    Hower JC; Senior CL; Suuberg EM; Hurt RH; Wilcox JL; Olson ES
    Prog Energy Combust Sci; 2010 Aug; 36(4):. PubMed ID: 24223466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the microstructural and magnetic properties of fly ashes obtained from different thermal power plants in West Bengal, India.
    Bhattacharjee A; Mandal H; Roy M; Kusz J; Hofmeister W
    Environ Monit Assess; 2013 Oct; 185(10):8673-83. PubMed ID: 23612769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental, health and safety issues: Incinerator filters nanoparticles.
    Wiesner MR; Plata DL
    Nat Nanotechnol; 2012 Aug; 7(8):487-8. PubMed ID: 22864167
    [No Abstract]   [Full Text] [Related]  

  • 12. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects.
    Silva LF; da Boit KM
    Environ Monit Assess; 2011 Mar; 174(1-4):187-97. PubMed ID: 20422282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash.
    Hower JC; Graham UM; Dozier A; Tseng MT; Khatri RA
    Environ Sci Technol; 2008 Nov; 42(22):8471-7. PubMed ID: 19068834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic precipitator collection efficiency and trace element emissions from co-combustion of biomass and recovered fuel in fluidized-bed combustion.
    Lind T; Hokkinen J; Jokiniemi JK; Saarikoski S; Hillamo R
    Environ Sci Technol; 2003 Jun; 37(12):2842-6. PubMed ID: 12854728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy.
    Chen Y; Shah N; Huggins FE; Huffman GP
    Environ Sci Technol; 2004 Dec; 38(24):6553-60. PubMed ID: 15669312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission electron microscopy investigation of ultrafine coal fly ash particles.
    Chen Y; Shah N; Huggins FE; Huffman GP
    Environ Sci Technol; 2005 Feb; 39(4):1144-51. PubMed ID: 15773488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The geochemistry and bioreactivity of fly-ash from coal-burning power stations.
    Jones T; Wlodarczyk A; Koshy L; Brown P; Shao L; BéruBé K
    Biomarkers; 2009 Jul; 14 Suppl 1():45-8. PubMed ID: 19604058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution.
    Weibel G; Eggenberger U; Kulik DA; Hummel W; Schlumberger S; Klink W; Fisch M; Mäder UK
    Waste Manag; 2018 Jun; 76():457-471. PubMed ID: 29559296
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.