These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 19069752)
1. A reliable bioassay procedure to evaluate per os toxicity of Bacillus thuringiensis strains against the rice delphacid, Tagosodes orizicolus (Homoptera: Delphacidae). Mora R; Ibarra JE; Espinoza AM Rev Biol Trop; 2007 Jun; 55(2):373-83. PubMed ID: 19069752 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). Stevens MM; Akhurst RJ; Clifton MA; Hughes PA J Invertebr Pathol; 2004 Jul; 86(3):104-10. PubMed ID: 15261774 [TBL] [Abstract][Full Text] [Related]
3. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
4. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). Chen H; Zhang G; Zhang Q; Lin Y J Econ Entomol; 2008 Feb; 101(1):182-9. PubMed ID: 18330134 [TBL] [Abstract][Full Text] [Related]
5. Assessing the Potential Infection of Tagosodes orizicolus (Hemiptera: Delphacidae) by Rice Hoja Blanca Virus in Texas. Martin JE; Bernal Jimenez EK; Cruz MG; Zhu-Salzman K; Way MO; Badillo-Vargas IE J Econ Entomol; 2020 Apr; 113(2):1018-1022. PubMed ID: 31778533 [TBL] [Abstract][Full Text] [Related]
6. Genetic diversity of Costa Rican populations of the rice planthopper Tagosodes orizicolus (Homoptera: Delphacidae). Hernández M; Quesada T; Muñoz C; Espinoza AM Rev Biol Trop; 2004 Sep; 52(3):795-806. PubMed ID: 17361572 [TBL] [Abstract][Full Text] [Related]
7. Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays. Deng J; Wang Y; Yang F; Liu Y; Liu B Sci Total Environ; 2019 Aug; 679():45-51. PubMed ID: 31078774 [TBL] [Abstract][Full Text] [Related]
8. Bacillus thuringiensis serovar israelensis is highly toxic to the coffee berry borer, Hypothenemus hampei Ferr. (Coleoptera: Scolytidae). Méndez-López I; Basurto-Ríos R; Ibarra JE FEMS Microbiol Lett; 2003 Sep; 226(1):73-7. PubMed ID: 13129610 [TBL] [Abstract][Full Text] [Related]
9. Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. Navon A; Klein M; Braun S J Invertebr Pathol; 1990 May; 55(3):387-93. PubMed ID: 2351843 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Kotze AC; O'Grady J; Gough JM; Pearson R; Bagnall NH; Kemp DH; Akhurst RJ Int J Parasitol; 2005 Aug; 35(9):1013-22. PubMed ID: 15964574 [TBL] [Abstract][Full Text] [Related]
11. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Renzi MT; Amichot M; Pauron D; Tchamitchian S; Brunet JL; Kretzschmar A; Maini S; Belzunces LP Ecotoxicol Environ Saf; 2016 May; 127():205-13. PubMed ID: 26866756 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of Oryza sativa (Poaceae) resistance to Tagosodes orizicolus (Homoptera: Delphacidae) under greenhouse condition in Venezuela. González A; Labrín N; Alvarez RM; Jayaro Y; Gamboa C; Reyes E; Barrientos V Rev Biol Trop; 2012 Mar; 60(1):105-17. PubMed ID: 22458212 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetic position of the yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) based on 18S ribosomal DNA partial sequences. Xet-Mull AM; Quesada T; Espinoza AM Rev Biol Trop; 2004 Sep; 52(3):777-85. PubMed ID: 17361570 [TBL] [Abstract][Full Text] [Related]
14. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
15. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
16. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Romeis J; Dutton A; Bigler F J Insect Physiol; 2004; 50(2-3):175-83. PubMed ID: 15019519 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems. Arrieta G; Espinoza AM Rev Biol Trop; 2006 Mar; 54(1):13-27. PubMed ID: 18457170 [TBL] [Abstract][Full Text] [Related]
18. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. Srinivasan R J Invertebr Pathol; 2008 Jan; 97(1):79-81. PubMed ID: 17689558 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of granular corncob formulations of Bacillus thuringiensis serovar israelensis against mosquito larvae using a semi-field bioassay method. Ali A; Xue RD; Lobinske R; Carandang N J Am Mosq Control Assoc; 1994 Dec; 10(4):492-5. PubMed ID: 7707052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]