BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19069984)

  • 1. Effects of paclobutrazol and salt stress on growth and ionic contents in two cultivars of wheat.
    Hajihashemi S; Kiarostami K
    Pak J Biol Sci; 2007 Jan; 10(1):41-8. PubMed ID: 19069984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.
    Ashraf MA; Ashraf M
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6227-43. PubMed ID: 26611626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars.
    Cai ZQ; Gao Q
    BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution.
    Zheng YH; Li X; Li YG; Miao BH; Xu H; Simmons M; Yang XH
    Plant Physiol Biochem; 2012 Mar; 52():169-78. PubMed ID: 22285371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of paclobutrazol on the yield, quality, and related enzyme activities of different quality type peanut cultivars].
    Zhang JL; Wang YY; Sun LQ; Wei TT; Gu XH; Gao F; Li XD
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2850-6. PubMed ID: 24483079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity.
    Siddiqui MN; Mostofa MG; Akter MM; Srivastava AK; Sayed MA; Hasan MS; Tran LP
    Chemosphere; 2017 Nov; 187():385-394. PubMed ID: 28858718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil drenching of paclobutrazol: An efficient way to improve quinoa performance under salinity.
    Waqas M; Yaning C; Iqbal H; Shareef M; Ur Rehman H; Iqbal S; Mahmood S
    Physiol Plant; 2019 Feb; 165(2):219-231. PubMed ID: 30133704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.
    Zheng Y; Cheng D; Simmons M
    Sci Total Environ; 2014 Nov; 499():18-26. PubMed ID: 25173858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na
    Javaid T; Farooq MA; Akhtar J; Saqib ZA; Anwar-Ul-Haq M
    Plant Physiol Biochem; 2019 Aug; 141():291-299. PubMed ID: 31202193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.
    Takahashi F; Tilbrook J; Trittermann C; Berger B; Roy SJ; Seki M; Shinozaki K; Tester M
    PLoS One; 2015; 10(8):e0133322. PubMed ID: 26244554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.
    Pandolfi C; Bazihizina N; Giordano C; Mancuso S; Azzarello E
    Tree Physiol; 2017 Mar; 37(3):380-388. PubMed ID: 28338715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of silicon priming and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment.
    Azeem M; Iqbal N; Kausar S; Javed MT; Akram MS; Sajid MA
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14367-71. PubMed ID: 26154041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions.
    El-Hendawy SE; Hassan WM; Al-Suhaibani NA; Refay Y; Abdella KA
    Front Plant Sci; 2017; 8():435. PubMed ID: 28424718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms.
    Aycan M; Baslam M; Asiloglu R; Mitsui T; Yildiz M
    Plant Physiol Biochem; 2021 Sep; 166():314-327. PubMed ID: 34147724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars.
    Heidari M; Mesri F
    Pak J Biol Sci; 2008 May; 11(10):1385-9. PubMed ID: 18817274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium supply effects on wheat cultivars differing in salt resistance with special reference to leaf cytosol ion homeostasis.
    Morgan SH; Lindberg S; Mühling KH
    Physiol Plant; 2013 Nov; 149(3):321-8. PubMed ID: 23413983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K+ ions in relation to salinity.
    Almodares A; Hadi MR; Kholdebarin B; Samedani B; Kharazian ZA
    J Environ Biol; 2014 Jul; 35(4):733-9. PubMed ID: 25004761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage.
    Tao R; Ding J; Li C; Zhu X; Guo W; Zhu M
    Front Plant Sci; 2021; 12():646175. PubMed ID: 33868346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/K+ selectivity of leaf sheath in wheat cultivars differing in salt tolerance.
    Ding TL; Duan P; Wang BS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):123-6. PubMed ID: 16477141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid.
    Loutfy N; Sakuma Y; Gupta DK; Inouhe M
    J Plant Res; 2020 Jul; 133(4):549-570. PubMed ID: 32323039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.