These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19069984)

  • 41. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat.
    Robin AH; Matthew C; Uddin MJ; Bayazid KN
    J Exp Bot; 2016 Jun; 67(12):3719-29. PubMed ID: 26951370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers.
    Shahzad A; Ahmad M; Iqbal M; Ahmed I; Ali GM
    Genet Mol Res; 2012 Mar; 11(1):679-92. PubMed ID: 22535404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential of Salt Tolerant PGPR in Growth and Yield Augmentation of Wheat (
    Nawaz A; Shahbaz M; Asadullah ; Imran A; Marghoob MU; Imtiaz M; Mubeen F
    Front Microbiol; 2020; 11():2019. PubMed ID: 33117299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.).
    Shafi M; Bakht J; Hassan MJ; Raziuddin M; Zhang G
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):772-6. PubMed ID: 19294326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley.
    Wu H; Shabala L; Zhou M; Stefano G; Pandolfi C; Mancuso S; Shabala S
    Planta; 2015 Oct; 242(4):847-57. PubMed ID: 25991439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.).
    Omrani S; Arzani A; Esmaeilzadeh Moghaddam M; Mahlooji M
    PLoS One; 2022; 17(3):e0265520. PubMed ID: 35298534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of chemical paclobutrazol on growth, yield and quality of okra (Abelmoschus esculentus L.) Har lium cultivar in northeast Thailand.
    Benjawan C; Chutichudet P; Chanaboon T
    Pak J Biol Sci; 2007 Feb; 10(3):433-8. PubMed ID: 19069514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved Salinity Tolerance-Associated Variables Observed in EMS Mutagenized Wheat Lines.
    Lethin J; Byrt C; Berger B; Brien C; Jewell N; Roy S; Mousavi H; Sukumaran S; Olsson O; Aronsson H
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra).
    Das P; Manna I; Biswas AK; Bandyopadhyay M
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26625-26642. PubMed ID: 30003482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-existence of salt and drought tolerance in Triticeae.
    Farooq S; Azam F
    Hereditas; 2001; 135(2-3):205-10. PubMed ID: 12152336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L.
    Gopi R; Jaleel CA; Sairam R; Lakshmanan GM; Gomathinayagam M; Panneerselvam R
    Colloids Surf B Biointerfaces; 2007 Nov; 60(2):180-6. PubMed ID: 17644352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas.
    Rahman MM; Mostofa MG; Rahman MA; Miah MG; Saha SR; Karim MA; Keya SS; Akter M; Islam M; Tran LP
    Protoplasma; 2019 Jan; 256(1):181-191. PubMed ID: 30062531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.
    Upadhyay SK; Singh DP
    Plant Biol (Stuttg); 2015 Jan; 17(1):288-93. PubMed ID: 24750405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water.
    A M D; M M H; N S; A A EA; L M
    Plants (Basel); 2018 Apr; 7(2):. PubMed ID: 29614015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of wheat (
    Ahmed HGM; Zeng Y; Raza H; Muhammad D; Iqbal M; Uzair M; Khan MA; Iqbal R; El Sabagh A
    Front Plant Sci; 2022; 13():953670. PubMed ID: 35958197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Apical-root apoplastic acidification affects cell wall extensibility in wheat under salinity stress.
    Shao Y; Feng X; Nakahara H; Irshad M; Eneji AE; Zheng Y; Fujimaki H; An P
    Physiol Plant; 2021 Dec; 173(4):1850-1861. PubMed ID: 34402071
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity.
    Zhang MX; Bai R; Nan M; Ren W; Wang CM; Shabala S; Zhang JL
    J Plant Physiol; 2022 Jun; 273():153708. PubMed ID: 35504119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.).
    Singh RP; Jha PN
    PLoS One; 2016; 11(6):e0155026. PubMed ID: 27322827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance.
    Kumar RG; Shah K; Dubey RS
    Plant Sci; 2000 Jul; 156(1):23-34. PubMed ID: 10908802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na
    Chen Y; Han Y; Kong X; Kang H; Ren Y; Wang W
    Physiol Plant; 2017 Feb; 159(2):161-177. PubMed ID: 27545692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.