BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1701 related articles for article (PubMed ID: 19070237)

  • 21. Spectral optimization for micro-CT.
    Hupfer M; Nowak T; Brauweiler R; Eisa F; Kalender WA
    Med Phys; 2012 Jun; 39(6):3229-39. PubMed ID: 22755706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving dose calculation accuracy in preclinical radiation experiments using multi-energy element resolved cone-beam CT.
    Huang Y; Hu X; Zhong Y; Lai Y; Shen C; Jia X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34753117
    [No Abstract]   [Full Text] [Related]  

  • 25. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system.
    Zhang G; Pauwels R; Marshall N; Shaheen E; Nuyts J; Jacobs R; Bosmans H
    Phys Med Biol; 2011 Sep; 56(18):5823-43. PubMed ID: 21846936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-based three-material decomposition in dual-energy CT using the volume conservation constraint.
    Liu SZ; Tivnan M; Osgood GM; Siewerdsen JH; Stayman JW; Zbijewski W
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35724658
    [No Abstract]   [Full Text] [Related]  

  • 27. Implementation of dual-energy technique for virtual monochromatic and linearly mixed CBCTs.
    Li H; Giles W; Ren L; Bowsher J; Yin FF
    Med Phys; 2012 Oct; 39(10):6056-64. PubMed ID: 23039644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-specific pixel-based weighting factor dual-energy x-ray imaging system using a priori CT data.
    Darvish-Molla S; Reno MC; Sattarivand M
    Med Phys; 2019 Feb; 46(2):528-543. PubMed ID: 30582871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.
    Stenner P; Kachelriess M
    Med Phys; 2008 Nov; 35(11):5054-60. PubMed ID: 19070239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual energy CT for attenuation correction with PET/CT.
    Xia T; Alessio AM; Kinahan PE
    Med Phys; 2014 Jan; 41(1):012501. PubMed ID: 24387525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Image-Domain Contrast Material Extraction Method for Dual-Energy Computed Tomography.
    Lambert JW; Sun Y; Gould RG; Ohliger MA; Li Z; Yeh BM
    Invest Radiol; 2017 Apr; 52(4):245-254. PubMed ID: 27875338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of bone marrow edema detection using dual-energy cone-beam computed tomography.
    Liu SZ; Herbst M; Schaefer J; Weber T; Vogt S; Ritschl L; Kappler S; Kawcak CE; Stewart HL; Siewerdsen JH; Zbijewski W
    Med Phys; 2024 Mar; 51(3):1653-1673. PubMed ID: 38323878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated bone removal in CT angiography: comparison of methods based on single energy and dual energy scans.
    van Straten M; Schaap M; Dijkshoorn ML; Greuter MJ; van der Lugt A; Krestin GP; Niessen WJ
    Med Phys; 2011 Nov; 38(11):6128-37. PubMed ID: 22047377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-line phase contrast micro-CT reconstruction for biomedical specimens.
    Fu J; Tan R
    Biomed Mater Eng; 2014; 24(1):431-7. PubMed ID: 24211924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical performance and image optimization of megavoltage cone-beam CT.
    Morin O; Aubry JF; Aubin M; Chen J; Descovich M; Hashemi AB; Pouliot J
    Med Phys; 2009 Apr; 36(4):1421-32. PubMed ID: 19472649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive noise reduction for dual-energy x-ray imaging based on spatial variations in beam attenuation.
    Romadanov I; Sattarivand M
    Phys Med Biol; 2020 Dec; 65(24):245023. PubMed ID: 32554889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 86.